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 The purpose of this study is to describe the procedure and examples of visual 

proofs (VP-or proof without words) developed by gifted mathematics secondary 

school students after their experiences. The participants of this study are three 

male 9
th

 grade students enrolled in a private science high school. In the first stage 

of the research a briefing was given to the three selected students. Then, structure 

and examples of VPs are discussed by the participants. During this process the 

researchers and participants met once a week for five weeks. The participants 

developed VP examples stage-by-stage. The qualitative research method was 

used to analyze the data gathered from both the VPs developed by the 

participants and also from the participants‟ responses to a written questionnaire. 

According to analysis of the VPs, the examples were found to be in three 

categories. Examples of each category are presented in the study and discussed, 

along with participants‟ thoughts about each of them.  
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Introduction 

 

Proof education has long been the focal point of comprehensive research studies in the literature of mathematics 

education, for more than 20 years (Chin & Lin, 2009; Hanna, 2008). The sheer volume of studies indicates the 

importance of proof as one of the vital building blocks of school mathematics. Proof ensures making 

mathematics, communicating in a mathematical way, and storing mathematical knowledge (Schoenfeld, 1994). 

According to Tall (1998), proof is the basis of mathematics. It is possible to put forward what proof is or what it 

means in various ways. Hanna, de Villiers, Arzarello, Dreyfus, Duran-Guerrier, Jahnke, Lin, Selden, Tall and 

Yerdokimov (2009) state that proof has different meanings in today‟s professional area of mathematics. Nolt, 

Rohatyn and Varzi (1998) define proof as deriving results from hypotheses using generally valid rules of 

inference. According to Knuth (2002b), a deductive argument shows why a statement is correct on the basis of 

other mathematical results and/or introspections towards mathematical structures in the said statement. No 

matter under which circumstances it is dealt with, proof plays a crucial role in the structure and development of 

mathematics (Hanna et al., 2009; Schoenfeld, 1994). A proof, in fact, is an important tool that encourages 

understanding in its own right (Ball, Hoyles, Jahnke & Movshovits-Hadar, 2002). Proof may assist learners to 

perceive integrity of mathematics and to reach its meaning in the deepest respect; hence, it is important in terms 

of providing learners with the unchangeable fundamentals of mathematics (Waring, 2008). The proving process 

requires several core skills such as supporting assumptions, reviewing given features or organizing logical 

deductions. Due to such skill requirements, many students experience problems in proving and with the 

processes of proving. Due to the increasing importance of proof in mathematics curricula, there have been 

several studies conducted by mathematics educators that deal with problems experienced by students regarding 

proof (Smith, 2006). Studies generally conclude that students have some negativity about proof. According to 

Segal (1999), students consider mathematical proof difficult for a number of reasons. Ball et al., (2002) states 

that proof seems a meaningless ritual for many students. Students therefore need help to understand the proof in 

order to remove such negative thoughts and feelings against the concept of proof. Understanding proof is an 

important skill, not only for students having problem with proof as a process, but also for all learners. One of the 

fundamental ways of helping students in understanding proof and proving process is to have them contend with 

a proof. Hanna (2000) states that it should be achievable to make a definition and to follow all valid connections 

for inductive reasoning in order for a student to be able to understand the proof, and claims that students should 

work on proofs and create new proofs in order to acknowledge this. 
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In addition to common approaches, it would be useful to make use of alternative approaches in understanding 

and creating proofs. Visualization is one such approach that may be used in order to understand proof as to help 

mathematical understanding. Besides general proof methods, using visual elements in order to increase the 

awareness of students may be beneficial, both for attracting the attention of and for assisting students to make 

connections among subject matters and concepts. Just like other scientific disciplines, mathematics education 

gives importance to demonstrations (Kadunz, 2006). It is generally accepted that visualization and 

exemplification play a vital role in mathematics (Casselman, 2000). For instance diagrams and charts play 

various roles in mathematical texts; if used properly, a diagram supports reasoning or may be considered as 

reasoning in itself (Maanen, 2006). From this perspective, combining visual elements with proof may assist 

students to get past any problems they may have about proofs; helping them to better understand. 

 

According to Borwein and Jörgenson (1997), visual reasoning generally plays a greater role in mathematics and 

some visual representations can even constitute proofs. The discussion document of ICMI Study 19 (Hanna, et 

al.,  2009) stated that verbal, visual or formal ways of proving may have an effect on understanding the proofs 

and learning about proofs in general. Hence, a review of studies conducted on visualization of mathematics and 

students‟ proof processes shows that there is a specific area that is called visual proof (or proof without words; 

PWW), embracing these two titles. 

 

 

Visual Proofs 

  

One of the most renowned resources about visual proofs (VPs) is Roger B. Nelsen‟s 1993 book titled “Proof 

Without Words: Exercises in Visual Thinking”. Nelsen defines nonverbal proofs in the introduction part as 

follows: 

 

PWW are pictures or diagrams that help the observer see why a particular statement may be true, and 

also to see how one might begin to go about proving it true. In some, an equation or two may appear in 

order to guide the observer in this process. But the emphasis is clearly on providing visual clues to the 

observer to stimulate mathematical thought (Nelsen, 1993: p.VI). 

 

Maanen (2006) describes VP as being comprised of a series of drawings that encourage thinking. Similar to the 

first definition, Alsina and Nelsen (2010) define nonverbal proofs as pictures and diagrams that show why a 

mathematical statement is true, and that help to assist in starting to prove its trueness. In the introduction part of 

his book, Nelsen (1993) states that VPs first emerged as a look-see diagram in Martin Gardner‟s column in 

Scientific American in 1973, and then been published regularly in Mathematics Magazine and The College 

Mathematics Journal in 1975. Gardner sets forth that proof may generally be supported simply and correctly by 

a geometrical analogue, and that it is possible to see the trueness of a proof at a single glance (cited in Nelsen, 

1993). According to Maanen (2006), on the other hand, the first source with nonverbal proofs is the geometry 

book of an unbeknown author named Sybrandt Hansz Cardinael, estimated to be published in 1612. The original 

title of this Dutch writer‟s book is Hondert Geometrische Questien Met Hare Solutien. Maanen (2006) stated 

that Cardinael did not make any mathematical explanation besides visual elements in the proof, and exemplified 

it with the proof of the Pythagoras theorem. It was also stated that Cardinael provided nonverbal proofs not only 

related to geometry, but also to arithmetic. Bell (2011) also gives an example of the proof of Pythagorean 

Theorem drawings found in one of the oldest Chinese textbooks, titled “Arithmetic Classic of Gnomon and the 

Circular Paths of Heaven” (ca.300 BCE), and which was shaped into the last version of root calculation 

(Vijaganita) by the Indian mathematician Bhaskara (1114-85 CE). 

 

VPs can be created using dots, squares, spheres, cubes and other similar easy and simple drawing tools. VPs 

may be used to prove theorems in geometry, number theory, trigonometry, analysis, inequalities, and other areas 

of mathematics (Alsina & Nelsen, 2010). Hence, visual elements are not only used to understand theorem and 

proof, but also to attract attention to the approach of the proof, as well as to ensure the proof for a long time 

(Hanna & Sidoli, 2007). From this perspective, compared to other traditional approaches to proof, nonverbal 

proofs allow for clear understanding of and reason about mathematical concepts (Waring, 2008). 

  

There are few in-classroom studies about VPs in the literature (particularly in Turkey), yet it is similarly hard to 

find studies including analysis based on participant performance or instructional practices in Turkey. Hence, 

Maanen (2006) also pointed out the importance and necessity for more studies on VP. It is seen that studies on 

VP generally includes basic information of the subject matter as well as some historical or unique examples 

(e.g. Alsina & Nelson, 2010; Maanen, 2006; Casselman, 2000; Siu, 1993). Nonetheless, although limited, there 

are studies approaching the phenomenon from an instructional perspective. For instance Flores (1992) presents 
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VP samples used in his „problem solving and proof‟ classes. He uses VPs as an alternative approach for 

mathematical induction, and emphasizes the practicality of VPs for students to understand why mathematical 

reasoning formulas are true: “These diagrams have the advantage of being proofs that explain, giving students 

some insight into how these formulas can be derived …” (p.394). Despite not having conducted a classroom 

application, Knuth (2002a) uses VP to present examples of explanatory proof (that explains why a statement is 

true), which is one of the fundamental functions of proofs from an educational perspective. Describing the role 

of proofs based on such visual models as “fostering understanding of the underlying mathematics” (p.487), 

Knuth emphasizes that these models can help teachers create more functional learning environments for 

teaching proofs within the frame of reform movements in mathematics education. Another study that provides 

significant data parallel to our objective in instructional terms was conducted by Bardelle (2009). This is a study 

on the use of VPs in mathematics education where Bardelle studied with 13 mathematics students at higher 

education level in Italy and gave them two tasks including VPs (Pythagoras theorem and Geometric Series). The 

researcher then wanted the participants, who were unfamiliar with such visual proofs, to describe them and 

reviewed their responses. It was seen that the participants were not able to succeed in understanding, describing 

and reconstructing the proof. In another study, Bell (2011), also a mathematics teacher, used VP in her 

classroom through online class discussion. She claimed that use of technology encouraged class discussions 

about VP and also allowed for peer learning, and helped to improve students‟ written communication of 

mathematical ideas. On the other hand, Dickerson and Doerr (2015) tried to understand mathematics teachers‟ 

perception on proof in mathematics classes. The researchers concluded that the more experienced teachers 

satisfied by less formal arguments and proof based on concrete or visual features (VP), whereas less experienced 

ones stressed the importance of details in proof writing and standard language. 

 

A review of Turkish literature on mathematics education found only one research study based on the 

instructional application of VPs. Doruk, Kıymaz and Horzum (2012) conducted a study with 32 pre-service 

teachers at a school of education to develop a concrete, visual model for (a+b)
3
 = a

3
+3a

2
b+3ab

2
+b

3
 identity and 

for constructing a proof accordingly. The study concluded that the participants provided positive views, and 

were successful in constructing the proof for the given identity as well as understanding it. The authors 

recommended to conduct similar studies on visualization of proofs and using concrete models. 

 

In the rich literature on proof and proving, there are many studies on visual proof and examples of its use, hence, 

there is a general tendency for interest in VPs (Bardelle, 2009). However, it has been observed that there are 

insufficient studies on the role and function of VPs in proof education or on classroom applications or other 

instructional activities related to understanding and creating VPs. There is a need for more research in this area. 

This study aims to contribute to fill the gap in this area of instructional applications by describing the examples 

developed by mathematically gifted secondary education students following a short experience with VPs, and at 

determining their general thoughts towards VPs. The research question in this study is therefore: “What is the 

structure of VP examples developed by mathematically gifted secondary education students, and what are their 

thoughts about VPs in this regard?” 

 

 

Method 
 

This study is a descriptive qualitative research. Descriptive qualitative research design helps to understand the 

concept investigated throughout the study in detail. 

  

 

Participants 

 

Three 9th grade male students are the participants of the study who are all enrolled at a Science High School in a 

metropolitan city of western Turkey. The reason for choosing a science high school is the teaching of proofs at 

this type of high school. According to the researchers‟ experiences and observations, apart from some Anatolian 

High Schools and Science High Schools, other high schools only cover proof in their geometry courses or a 

limited version of proofs on mathematics courses. According to researchers, the most important reason for this 

picture is the exams held in the country and the national university entrance exam which involves only a few 

proof-related questions. In addition, the other important reason is that the way of serving the proof and proof 

techniques in previous curricula. However, as a result of the aim of the Science High Schools‟ foundation and 

the teaching principles of these schools, the value and place of the proofs and proving in mathematics curricula 

are relatively more prominent. Because of this, the researchers thought it would be more useful for the VP 

research to work with Science High Schools students who have experiences with proof and proof concept. Six 

students were selected as candidate participants for the research, according to the math and geometry teachers‟ 



177 
 

Int J Educ Math Sci Technol 

opinions among the high achievers who volunteered for the study. During the selection procedure, one-to-one 

interviews were conducted and some explanations given about the study. In the interviews, participants were 

asked about their thoughts on proofs. In doing this, the aim was not to construct formal conclusions about proof, 

but just to obtain some views about the thought patterns of the participants in order to help select participants 

who are both keen to take part in the research study and who possess the most knowledge about proofs. The 

participants were given pseudonyms as Burak, Mustafa and Erdem. These students are high achievers both in 

their mathematics and geometry courses and all received scholarships from the school
 
which is a private school. 

During selection of the participants, the following criteria were considered; that they all volunteered for the 

study, received very high scores from their geometry and mathematics courses and have not seen VPs before. 

  

 

Data Handling 

 

In the first part of the study, a three hour briefing is given about VPs to the three selected students at the end of 

the spring semester. After a short introduction, the researchers and students discussed the structure of VPs and 

some examples. Discussions were conducted as out-of-class activities in a separate classroom. Three students 

and two researchers agreed on a specific time for this joint study. Researchers kept direct information provision 

at a minimum level in these sessions, and preferred to mostly apply question-answer technique to discuss the 

structure of the VPs, whether this structure could be changed, how the VPs could be produced, whether the 

visual models were understandable easily by the students. This process was conducted in two one-and-half-hour 

sessions in a day. Later, the 10 VP examples selected from the literature are given to students to study them 

outside of school. It is considered that the selected examples are not complex, but that they are different to each 

other, and suitable for the participants‟ level of understanding.  

 

 
 

Students were asked to study on 10 VPs individually. After they completed the individual studies, they were 

allowed to share their ideas with each other if they wished. Above figure shows four examples among 10 VPs 

given to the students. The other VP examples involved the following mathematical statements: 

 

 5
th

 statement: Pythogorean Theorem (a
2
+b

2
=c

2
) [Nelsen, 1993:7]   

 6
th

 statement: a
2
-b

2
= (a-b).(a+b) [Tall, 1995:6]  

 7
th

 statement:  n
2
-1=4.((n-1)/2)).((n+1)/2)) [Landauer, 1985:203] 

 8
th

 statement: The area of a triangle equals the product of its semi-perimeter and the radius of the 

inscribed circle.  [Alsina & Nelsen, 2006:110] 

 9
th

 statement: 1/4+ (1/4)
2
+(1/4)

3
+ … = 1/3 [Alsina & Nelson, 2006:74]. 

 10
th

 statement: 3.(1
2
+2

2
+3

2
+ … +n

2
)=(2n+1).(1+2+3+ … +n) [Nelsen, 1993:78] 
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While studying with 10 VPs, additional clarifications were needed only for the 3
rd

 and the 8
th 

statements 

(measurement of the angle seeing the diameter and the concept of semi-perimeter) for students to recall the 

subject, and other statements did not require any explanation or clarification. Over the following week, the three 

participants and the first author gathered to discuss the 10 VPs through visual modeling of the proofs. In this 

session, students‟ procedures of constructing the meaning of VPs are considered and for some examples, the 

group worked together to construct the meaning and modeling of VPs. In the next step, they were asked to 

construct their own VP either working by themselves or together. During this time, the two authors and the 

participants met once a week for five weeks to discuss the examples produced by the participants. These 

sessions were conducted in a high school out of the school time.  This process helped students to share their 

opinion with the other participants and the researchers. The participants were allowed to criticize the others‟ 

VPs as well. On the other hand, the researchers participated passively (listening, observing, asking short 

questions just to trigger discussion) in the procedure. They did not make any subjective comments on the 

constructed VPs like „true‟, „not true‟ or „very good‟. During the last week of the study, participants gave their 

final shape of the constructed VPs and they finished off the visual models by using a virtual tool. Right after this 

procedure, participants were given 40 minutes and asked to fill out a five question written form about their 

opinion on VP. The VP examples and written interview forms represent the data of this study. 

  

 

The Process  

 

At the beginning of the study, in the first session in which the researchers and participants worked together, it is 

realized that the participants had no idea about VPs and had not seen any examples before. The very first 

reaction of the participants about VPs is that they are very different from the usual proofs. The researchers 

explained that the VPs are not formal proof techniques - in the literature, some researchers accepted them as 

proofs on some levels or the alternative tools to help understand the proofs. After this explanation, the 

participants concentrated on not only examining the VPs, but also to discover them. In the second week, the 

participants‟ interests increased readily and the adaptation of working on VPs was obtained. This progress was 

beyond the researchers expectations. During the process of investigating the 10 given VP examples, the 

participants became interrogative and worked in cooperation with each other; making their work very 

productive. One of the indicators of this situation was that the participants were very eager to develop their own 

VPs and they created a competitive environment. The other indicator is that although the researchers did not 

make any manipulation or restriction during the developing of a model until the fourth week, the participants 

stated their own requests. The first request was for some resources about inequalities, identities and formulas 

that could not be found in the school textbooks, or from their school mathematics. After this request, the 

researchers made a list and presented it to the participants. The participants were free to select any of them and 

create visualizations of them. Although a list was prepared for the participants, it was mentioned that they were 

not restricted to just that list, and that they could pick any mathematical statement to visualize. The other request 

from the participants was the use of computer software rather than paper-pencil for modeling the VPs. The 

participants were told that they could use MS PowerPoint and Flash programs. All three participants were 

capable of using MS PowerPoint efficiently and one of them could also use Flash. After accepting their request, 

they transported their drafts across to the virtual environment in a very short time. 

 

Although Mustafa worked individually most of the time during the developing of the VPs, Burak and Erdem 

worked together, as was observed during the discussion sessions where they were interacting with each other. 

By the third week of the study, discussion about whether the VP developed on the suggestion of the first author 

can be categorized is considered by the participants and the researchers together. After this discussion, all the 

VPs were reexamined and the researchers agreed that the developed visual proofs could be categorized into 

three types. After this, the participants were told about the categories, which they agreed, and then they 

reorganized their developed VPs and also produced new VPs according to these categories. Before this point, 

the participants already had models in each category, developed from their own desires knowledge. After the 

categories were set, VPs continued to be developed by the participants based on their own wishes and 

knowledge, however, now there was a general framework and some boundaries of categorization set for the 

developing of VPs.  

 

The first category involved the unrestricted VP models produced at the beginning or middle of the study; the 

participants had developed proofs without words to different mathematical statements. The second category in 

the visual models were developed more than once and different to each other for one given mathematical 

statement. The examples from the third category represent VPs that show mathematical statement of a visual 

generalization. According to the literature, examples from the third category are seen infrequently, and because 
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of this, these examples could be accepted as more authentic (original). The examples from the second and third 

categories were developed from the middle to the end of the study.  

 

 

Data Analysis 

 

Literature indicates no accepted framework or coding system for analysis of VPs. A study of Borwein and 

Jörgenson (2001) is the only study, which roughly mentions an investigation system/criteria that could be useful 

while examining VPs. Here, the researchers discuss there are three requirements to accept a visual proof: 1-

reliability, 2-consistency, and 3-repeatability (Borwein & Jörgenson, 2001).  

 

“Reliability [is] the underlying means of arriving at the proof are reliable and that the results is 

unvarying with each inspection. Consistency [is] the means and end of the proof are consistent with 

other known facts, beliefs, and proof. Repeatability [is] the proof may be confirmed by or demonstrated 

to others (p.899)”. 

 

On the other hand, Hanna and Sidoli (2007) claim that these criteria cannot be completely applicable either to 

visual proof or to proof in general. It is particularly due to the „reliability‟ criteria, which is not expressed clear 

enough to show or decide whether a visual proof is reliable or not (Hanna & Sidoli, 2007; Hanna, 2000). 

Therefore, since there is no valid framework to analyze VPs and the only existing study (Borwein & Jörgenson, 

2001) is criticized in some respects, the authors have decided to produce their own coding system. The 

researchers examined the proofs together at the beginning. After that, each researcher examined the participants‟ 

examples based on two criteria: “reasoning involved” and “appropriate visual models”. Based on the findings 

from these examination, it was decided to use two codes to evaluate VPs: “correction of the model” and “visual 

structure”. By using these codes, three authors analyzed each VPs individually, and then compared the assigned 

codes.  

 

Table 1.  The System of Coding and Scoring of analyzing VPs 

Code-1. Correctness of the Model  

       Visual correctness 

       Numerical correctness 

Code-2. Structure of the Model  

       Understandability 

       Following the step 
 

(Score: 1)  

- Most or all of the steps are wrong. 

 

(Score: 1) 

- Steps are not clear and understandable. 

-The most of the visual transition cannot 

be followed. 

(Score: 2) 

- Steps are true in sofar.  

- Some of the steps are true.  

 

(Score: 2)  

- Steps are understandable in so far.  

- A certain amount of steps are 

understandable. 

- In some points of visual transitions 

cannot be followed.  

(Score: 3)  

- All steps are true.  

(Score: 3)  

- All steps are understandable and visual 

transitions can be followed.  

 

During the analysis, each developed VP was labeled as “insufficient”, “acceptable” or “sufficient”. The score 

and labels given under two codes of the each VPs are given in Table 2. The researchers met to compare codes 

and analysis. The examination was completed when the researchers agreed on the analysis conducted on the VPs 

based on the agreed criteria. During this process, two of the VPs were eliminated from the study because they 

were incomplete. One of the examples selected for the study had some problems for conducting an appropriate 

visual model, however, it was decided that this example should remain in the study because it shows the 

students‟ thought processes and approach to visual modeling. 

 

Table 2. The codes and labels used in VPs‟ analysis 

 Score Score Score Score Score Score Score 

Code-1 1 1 2 2 2 3 3 

Code-2 1 2 1 2 3 2 3 
 

Labels insufficient insufficient insufficient acceptable acceptable acceptable sufficient 
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Results 
 

It should be underlined that most of the VPs developed by the participants are considered by the researchers to 

be successful (sufficient & acceptable). After researchers‟ individual examinations, the intercoder reliability was 

calculated as 80%, obtained from the codes, excluding the two eliminated and one mismodeled VPs. In this 

chapter, the VPs from the three categories previously mentioned are described and the results from the 

participants‟ written expressions are presented. The VPs developed by the participants are presented in 

progressive 2-4 steps so that the participants‟ reasoning processes can be observed in detail.  

 

 

First Category 

 

This category involves the very initial proofs of the students, obtained right after they started to produce VPs. In 

the first category, there are six different VPs constructed as shown below: 

 

(VP-1). Mathematical statement: a² + b² = c² (Pythagorean Theorem) 

 

 
Figure 1. [C1.VP-1: Category 1, Visual Proof 1] 

 

The first proof was developed by Erdem. He constructed a visual model of Pythagorean Theorem. He started to 

construct three squares for each sides of the right triangle. Then he showed the proof of the theorem by dividing 

each square on the sides of the right triangle appropriately to place them into the big square lying on the c side. 

After placing two squares with side a (green square) and side b (yellow square) into the other square with side c, 

there occurred an area that intersected those two squares. Erdem accepted that this area was the same with the 

area which was located in the square with side c, and also located outside of the other two squares with side a 

and b; so, he revealed that the sum of the area of squares with sides a and b was equal to the area of the square 

with side c. The process is shown in Figure-2.  

 

 
Figure 2. C1.VP-1 Equality of area 

 

It is possible to see the correctness of the visual model by using a Dynamic Mathematics Software like 

GeoGebra and/or by using squared paper for the squares constructed by different a, b, c values (the areas 

numbered with 1, 2, 3, and 4 in Figure-2) (see Appendix-1). In drawings that use squared or scaled papers, 

where sides of right triangles are taken as 3-4-5 or 6-8-10, the constructed model would be as seen in Figure-1. 

However, when sides of the right triangle are taken as 7-24-25, areas numbered 1 and 2 are produced as same 

but areas numbered 3 and 4 become different than shown in the Figure-2 (see Appendix-1). This is not a 

problem for the correctness of the visual proof, but considered as a limitation for the visual model. On the other 
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hand, in Erdem‟s model, squares and intersection areas are colored so as to help to follow and improve the 

visual model. From this point of view, this VP-1 is given three points from Code-1, and 2 points from Code-2; 

and it is labeled as acceptable.  

 

(VP-2). Mathematical statement: a(x+a)(x+b)=x
 2
 +(a+b)x+ab 

 

 
Figure 3. [C1.VP-2] 

 

In this proof, a basic form depending on the dividing-shape technique, Mustafa set a rectangle with the sides of 

x+a, and x+b. Later, he constructed quadrilaterals with sides x, a, and b inside of the main shape. In the next 

step, he divided these quadrilaterals into three pieces. The first piece was with sides x and a+b, the second 

piece‟s sides were a and b, and the last piece was a square with side x. He, then, showed how it could be 

obtained from the left side of the equation by constructing three terms on the right side. The correctness of the 

visual model (in figure base) can be easily seen in the new models constructed by different x, a, and b values. 

Equality of the areas represented in each sides can be observed using GeoGebra or other types of software for 

numerical correctness. Mustafa colored quadrilaterals, and placed them one under another to represent left and 

right sides of the equality. Because of this, there is no difficulty in understanding the visual process conducted at 

each step, and transition from one step to another. The VP-2 is given three points from each Code, and labeled 

as sufficient.  

 

(VP-3). Mathematical statement: (n+1)!-1= n.n!+(n-1).(n-1)!+ … + 3.3!+2.2!+1.1! 

 

 
Figure 4. [C1.VP-3] 

 

In this next proof from Burak and Erdem, they made use of the first three terms to model equality consisting of 

factorization. The participants used different colors (from the left side) for the first (for n=1) term 

(1+1)!=1.1!+1, the second (for n=2) term (2+1)!=1.1!+2.2!+1, and the third (for n=3) term 

(3+1)!=1.1!+2.2!+3.3!+1; and then, they constructed the whole model for n=3 where each of three blocks 

consisted of six circles to model 3.3!. The (n+1)! placed on the left side of the mathematical statement can be 

rewritten as (n+1).n! By using this equality, Burak and Erdem showed constructed quadrilateral‟s sides as n! and 

n+1. In this way, the area of the outer quadrilateral enclosing all circles shows the left side of the equality, and 

the number of grouped circles inside the quadrilateral represents each term of the right side (i.e. 1.1!, 2.2! and 

3.3!) of the equality. In the last step of the model, by reducing one unit from the part of the rectangular shape, 

they finished the visual proof by showing how they achieved the left side of the given equation ((n+1)!-1).  

In the visual modeling process, Burak and Erdem associate the number of the circles with the area of the 

quadrilateral while representing terms with the small circles. The used model shows that the equality is valid for 

n=1, n=2 and n=3 both in numerically and visually. However, in the process of constructing the model, there are 

some restrictions regarding the visual perspectives. Among these restrictions, the first one is in step n=2 (the 

second step from left in Figure-4). The base and side length of all quadrilaterals in the model are represented by 

n! and n+1. However, this representation cannot be applied to quadrilateral with n=2. Although the base is 2!, 

the side will be 3; yet, the placement is vice versa. Another limitation of the model appears when n=4. This is 

related to n=2 situation. When the model in Figure-4 is expanded for n=4, 24 small circles in four rectangles 
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should be placed around the shape, which is obtained by n=3 in an appropriate way. When this placement is 

conducted to produce a visual pattern, the base becomes n!, and the side becomes n+1. Yet, if we start to 

construct primarily considering base and side while producing the model, then a visual pattern cannot be 

composed. This situation does not constitute a problem for the correctness of the model, however it causes a 

small limitation for the visuality (see Appendix-2). This limitation can be removed easily by relocating the small 

circles in n=2 step. In Figure-5, the researchers show how the circles can be arranged in an appropriate way, and 

how model for n=4 step is constructed. In this new drawing, both sides can be showed by using n! and n+1, and 

the visual arrangement is also more appropriate. By using these findings, it is possible to say that there is no 

problem in terms of the correctness of the model for VP-3 from an arrangement perspective, but there are some 

limitations in terms of understandability and traceability of the steps. So, VP-3 is given three points from Code-

1 and two points from Code-2, and considered as acceptable.  

 

 
Figure 5. [C1.VP-3] The Correct way of showing the Model 

 

(VP-4). Mathematical statement: x
2
-(a+b)x+ab=(x-a).(x-b) 

 

 
Figure 6. [C1.VP-4] 

 

In this proof modeled by Mustafa, both shapes are used properly. Mustafa, instead of dividing a whole 

quadrilateral in suitable shapes like he had done before, he chose to start by already divided shapes. In the 

beginning, the first and third terms [(x
2
+ab) → (x

2
: red+orange+light green)+(ab: dark green)] in the equation 

are shown with the first shape, and the second term [(a+b)x: (red+blue)] is shown by the second shape. Mustafa, 

then, disassembled the first shape and re-assembled it by appropriately translocating the pieces. So, he produced 

a shape congruent to the first one (middle part in Figure-6) and he used this for the next step. After modeling the 

left part of the equation using these two (first and second) shapes, the subtraction is modeled by removing some 

pieces from the figures and then the visualization is completed by reordering the figures. Consequently, it is 

proven that the remaining pieces represent the right side of the equation. It can be seen that Mustafa‟s reasoning 

in VP-2 continues in VP-4 with slight changes. In VP-2, Mustafa divides the model in appropriate shapes and 

reassembles it. In VP-4, he continues to apply this method in a different way to construct the congruent shape. 

His way of coloring the visual model makes it easy to understand disassembly and arrangement. VP-5 is given 

three points from both Codes, and labeled as sufficient.  

 

(VP-5). Mathematical statement: (x+y)
2
 = (x-y)

2
+4xy 

 

The fifth proof belongs to Mustafa again. For visualization of the equation (x+y)
2
=(x-y)

2
+4xy, he preferred to 

use the same technique which he applied in VP-2, by dividing the main shape into appropriate pieces and then 

combining them to get the expected result. In the beginning, he started with one square. Later, he constructed 

appropriate fragmentation to the square with x+y side in two steps, and in second step, he divided a side of the 

square into 3 segments as y, y and x-y.  
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Figure 7. [C1.VP-5] 

 

Immediately after, he drew the appropriate quadrilateral on these sides and used algebraic and colorful 

properties to show their areas. In the last step, the right side of the equality is modelled by dividing the shape 

into two parts. Figure-7 shows the four steps Mustafa modelled to have the right side of the equality by starting 

the left part of the equality, appropriately. This proof is given three points in both Codes, and labeled as 

sufficient.   

 

(VP-6). Mathematical statement: (a+b)
2
-c

2
 = (a+b+c).(a+b-c) 

 

 
Figure 8. [C1.VP-6] 

 

Mustafa constructed the final proof of the first category. He continues to use the same reasoning structure for 

VP-6 as he used for VP2, 4 and 5 models. In this proof, Mustafa picked an equation that helps to construct the 

difference of the squares, with a minor distinction where the first term consisted of two terms and the other 

involves one term, and then he built his VP. Mustafa started to developed his VP by constructing a square with 

sides a+b, then he redesigned the square with a side (a+b-c)+c and the other side a+b. After that, in the third 

step, he eliminated the square with sides c which is placed on the right side of the constructed large square. He 

divided the figure into appropriate blocks and then reconstructed them to get visualization of the right side of the 

equation. VP-6 is given three points, and labeled as sufficient.  

 

 

Second Category 

 

In the second category, it is shown how a visual proof can be constructed in different ways for one mathematical 

statement. For this category 1² + 2² + 3² + … + n² = 1/6.n.(n+1).(2n+1) was selected. For the visualization of 

this equality, participants used the same reasoning patterns to develop three VPs. 

 

(VP-7). Mathematical statement: 1
2
+2

2
+ ... +n

2
=1/6.(2n

2
+n).(n+1) 

 
Figure 9. [C2.VP-7] 
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In the visual proof produced by Burak and Erdem, they started to model squares of 1, 2 and 3 by using cubes. 

The dark blue cube represents square of 1, the green cubes represent square of 2 and the grey ones represent 

square of 3. In each figure, there are as many cubes as the squares of given numbers. Then, three figures are 

combined together and put on top of each other to make a three dimensional half piece (Figure-9, step-3). The 

corresponding red blocks (42 cubes) complete that half piece into a whole, and one-sixth of the whole figure 

becomes equal to the left part of the equation. So, the layer comprised of 14 cubes (combination of dark blue, 

green and grey cubes) constructed in the second step constitutes one-sixth of the whole shape. This visual model 

is true and valid for n=3. The right side of the mathematical statement corresponds to the width (n+1=4), length 

(2n+1=7) and height (n=3) of the three dimensional shape. Hence, it can clearly be seen that the one-sixth of the 

volume corresponds to the left side of the equality. Burak and Erdem did not write length and height depending 

on n in their visual model. On the other hand, VP-3 was also constructed by Burak and Erdem, and they had 

expressed the sides depending on n in that proof. This situation makes it a little difficult to comprehend VP-7.  

In this stage, that is n=3, VP-7 is given as 3 points from Code-1, and 3 points from Code-2, and labeled as 

sufficient. However, when the same model is tried with n=1, n=2 and n=4, it is seen that it is not possible to 

have the same model all the time (Appendix-3).  The logic of the model can be applied for n=1 and n=3, and for 

both these values the correctness is obvious. Yet, models constructed for n=2, n=4 and even for n=5 do not 

verify the mathematical statement. Figure-10 shows the VPs constructed for n=1 and n=2. As seen on the left 

side, the one-sixth of the fourth step of the model constructed for n=1 (constituted of one dark blue, two yellow 

and three red cubes) gives the very first step, which is the dark blue cube. However, on the right side, the one-

sixth of the model constructed for n=2 (one dark blue, four green, 10 yellow and 21 red cubes) in the fourth step 

does not provide the correct figure (one dark blue and four green) in the second step.  

 

 
Figure 10. VPs constructed for n=1 and n=2 

 

Therefore, it can be concluded that the model produced by Burak and Erdem is applicable for only n=1 and n=3. 

From this point of view, VP-7 is given two points from both Code-1 and Code-2, considered as acceptable.  

 

(VP-8). Mathematical statement: 1
2
+2

2
+ ...  +n

2
=1/6.(2n

2
+n).(n+1) 

 

 
Figure 11. [C2.VP-8] 

 

In the other visual proof produced by Burak and Erdem, a rectangle is selected with sides of appropriate length. 

They continue with this figure in a more simple presentation of the proof, 1
2
+2

2
+3

2
+4

2 
shown by colorful 

squares placed on the side 2n+1, which is completed with 25 light blue squares into a rectangle. So that the 

visual proof the addition of square of the sequential numbers started from 1 is modeled by showing the one over 

sixth area of the rectangle with n=5. There can also be a VP constructed where n is picked for 1, 2, 3 or 4 in the 

equation with the same reasoning pattern, but with different shapes. The participants picked n=5 because it is 

the most convenient, smallest number for representing the visual proof. The proof is presented in a very simple 

form with appropriate coloring, which VP-8 is sufficient by 3 points from each code. However, like in VP-7 

when it is tried to confirm numerical and visual correctness, it comes with some limitations. Figure-11 shows a 

model for n=5 (1
2
+2

2
+3

2
+4

2
+5

2
), where the first four terms are given with colored blocks (the sides are 2, 3 and 

4 in order) constructing four different squares, and the fifth term is represented by light blue blocks surrounding 

the other three squares from top and left side. The sides of the rectangle constructed with the first five terms are 
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n=5 and 2n+1=11. By adding five more rectangles in the same form to the left side of the original rectangle, we 

can have the big rectangle in the left side of the Figure-11. The one-sixth area of this rectangle represents the 

area of the rectangle (55 small squares), which represents the sum of the first five terms. There are two 

important criteria to construct this model. The first one is the length of the sides (n
2
+n and 2n+1), and the 

second is surrounding the squares that may not be viable depending on the number of blocks. On the other hand, 

it is possible to construct a visual model by applying the first criteria only. In this case, the appearance of VPs is 

quite different than the VP-8 in Figure-11. This can be seen in Figure-12 for n=1, 2, 3, and 4 in the models 

produced by the researchers.  

 

 
Figure 12. The VPs constructed for n=1, 2, 3 and 4 

 

This VP-8 is given two points from each two Codes and labeled as acceptable.  

 

(VP-9). Mathematical statement: 1
2
+2

2
+ ...  +n

2
=1/6.(2n

2
+n).(n+1) 

 

 
Figure 13. [C2.VP-9] 

 

VP-9, produced by Burak, is a different design of the previous proof (VP-8). Approach of transition from VP-8 

to VP-9 is different from transition of VP-7 to VP-8. The first transition reveals how to transit from three 

dimensional model to two dimensional model. The second transition includes how to construct two different 

versions from a plenary model. In VP-9, Burak consists of three main pieces, each consisting of two equal sub 

pieces which are formed with 14 (yellow+ green+red) small squares. It is shown how these figures represent 

addition of the sequential numbers‟ squares by using the colorful squares in the first 14 blocks part. These 

colorful pieces represent addition of the first three terms‟ squares. In the whole shape there are six of the 

colorful pieces placed, so that the area of the large rectangle shown by the six smaller parts represents the 

addition of the first three terms‟ square, and then by this figure the proof became obvious. In Figure-13, 

although it is not shown apparently, sides of the outer big rectangle are n+1 (the short one) and 2n
2
+n (the long 

one). In Figure-11, it is shown that the short side is 2n+1 and the long side is n
2
+n for VP-8.  In C2 (Category 

2), students use different sides in the three models, which shows that they can use different algebraic forms of 

the right side of the equality (1/6.(2n
2
+n).(n+1)= 1/6.n.(n+1).(2n+1)=1/6.(n

2
+n).(2n+1)).  

 

 
Figure 14. The constructed version of VP-9 for n=4 

 

It can be seen that the model in VP-9 for n=3 (and also the other n values, see Appendix-4 to n=1 and n=2) is 

valid for both visual and numerical correctness, and all steps are traceable. The researchers show that it is 

possible to produce a VP for n=4 depending on the logic that is used to produce VP-9 in Figure-14. From this 

point of view, VP-9 is given three points from Code-1 and Code-2, labeled as sufficient.  
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Third Category 

 

In the first proof of the third category (a+b)
2
, (a+b)

3
 and (a+b)

4
 are modeled with three figures. After that, in the 

second proof, some component parts of the visual proofs are constructed to the term of (a+b+c+… +t+k)
3 

which 

is the generalized version of (a+b)
3
, (a+b+c)

3
, (a+b+c+d)

3
 and (a+b+c+d+e)

3 
kinds of terms. While investigating 

the VPs in this category, the accentuated point is whether the reasoning of the visual models are constructed in a 

connected way or not. That is, it is examined that the approach and techniques used in a one VP from a sequence 

(for example the VPs constructed for (a+b)
2
, (a+b)

3 
ve (a+b)

4 
can be taken as a sequence) can be continued to 

use in the second and third and the others in correct and understandable way. By using this point of view, VPs in 

VP-10 are considered and evaluated as a whole. In this category, while investigating VP-10 and VP-11, each 

visual model should be correct and understandable as a whole in a visual sequence. Also, the conducted 

reasoning while constructing the visual structure should be considered whether it is applied correctly to each 

model in the sequence.  

 

 (VP-10). Mathematical statements: (a+b)
2
, (a+b)

3
 ve (a+b)

4 

 

 

 
Figure 15. [C3.VP-10] 

 

The generalization idea was reemphasized with three models which involve the addition of two terms with some 

powers constructed by Burak and Erdem together. The first shape ((a+b)
2
=a

2
+2ab+b

2
) is constructed easily 

because it is a model that can be found in textbooks and mathematics curriculum. The participants produced the 

second shape that shows (a+b)
3 

with
 
the

 
necessary reasoning pattern after the first step. In the second shape, after 

deciding the sides of the large rectangle (the whole picture) as a+b and a
2
+2ab+b

2
, the whole, when (a+b)

3 
is 

extracted, is placed into the rectangle with colored squares. In Figure-15, while constructing the second shape 

a=1 and b=3 are taken. Burak and Erdem constructed a small square for a and three squares for b, and they 

modelled all terms in the expansion of (a+b)
3
 with these small squares. They implanted the models of the whole 

terms in the expansion into a rectangle with the sides a+b (4 small squares) and a
2
+2ab+b

2
 (16 small squares); 

and they confirmed the mathematical statement by helping the formation of the area for the big rectangle. In the 

third shape which is far more complex, by further advancing their way of thinking, the term (a+b)
4
 is modeled in 

very different structure.  

 

Although this shape seems successful at first glance, there are some problems with it. Firstly, it is model that is 

difficult to understand and the truthfulness is valid for only a few numbers. The participants constructed this 

model for a=2 and b=3, and for these numbers the model is correct, but for different numbers the shape is found 

to be not true. If the area of the square which is placed on the bottom left is represented by a
4 

and also a
2 

for the 

dark blue one, then after redesigning the rest of the parts, it can be discernible that the side of the rectangle 

placed in the top right corner (orange) with area a
2
b

2
, should not be a.b/2. For the area of the whole shape, the 

multiplication of the base, which is (a+b)
2
,
 
and the right side with (a

2
+2b

2
+a.b/2) is not equal to the participant‟s 

answer (a+b)
2
.(a+b)

2.
. The participants used the numbers a=2 and b=3 to produce the visual model and make the 

model convenient for the chosen numbers. The important point in this model is that Burak and Erdem did not 

use a scaled drawing while constructing their model. Yet, same students constructed VPs by using small squares 

in Figure-11, 13 and even in the second step of Figure-15. If they applied this approach to the expansion of 

(a+b)
4
 it would be possible to draw the visual model in a more correct shape. It is possible to construct a decent 

and understandable model when some trials are conducted by using different a and b couples with scaled or 

squared papers. We have demonstrated for a=1 and b=2 on squared paper how VP can be constructed with 

depending on Burak and Erdem‟s reasoning style on Figure-16.I.  In the Figure-16.I it can easily be seen the 

terms of the expansion with the values of a=1 and b=2. It is also possible to see the area, (1+2)
4
 , of the big 
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square constructed by nine small squares as a side is equal the addition of the all small squares (that is the right 

side of the equality) placed. While constructing the visual proof without using scaled or squared paper, it is 

possible to construct a simple model as in Figure-16.II, like Burak and Erdem‟s model, by showing only the 

area. The model in Figure-16.II has a simple and easily understandable structure, where the corresponded 

mathematical statement is given correctly. However, based on the higher values of a and b, model which 

involved more visual details in the Figure-16.I is clearly more useful.    

 

              
                                                      (I)                                                                  (II) 

Figure 16. A different model for expansion of (a+b)
4
  for a=1 and b=2 

 

In this proof, the first and the second steps are true. However, the third step ((a+b)
4
) is true only for a couple of 

numbers, which is not therefore generalizable. When VP-10 is looked as a whole, it can be seen that three VPs 

inside of it are constructed with similar reasoning. This reasoning depends on the equality of the whole area, the 

area of division of a regular quadrilateral in an appropriate way, and the sum of the consisted areas. In this sense 

we can say that VP-10 involves three VPs in a coherent and consisted structure. In the light of individual and 

holistic evaluation of VP-10, it is given two points from Code-1 and Code-2 and it is labeled as acceptable.  

 

(VP-11.a). Mathematical statements: a
3
, (a+b)

3
, (a+b+c)

3 

 

 
Figure 17. [C3.VP-11.a] 

 

(VP-11.b). Mathematical statements: (a+b+c+d)
3
, (a+b+c+d+e)

3
 ve (a+b+c+… +t+k)

3 

 
Figure 18. [C3.VP-11.b] 

 

This model produced by Burak, is an elegant example which showed how some sequential statements can be 

generalizable by VPs. In this proof, in which three dimensional modeling is produced, it is revealed how the 
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visual model is constructed and how it is embedded successively. In the modeling‟s process, the reasoning 

started with simple presentations (a
3
 and (a+b)

3
), then it progressively reached the top level on the extraction of 

the third power of the four and five terms‟ addition so that in this level, by using the colorful representations, it 

appeared to be a good model for proof. Since the structure was becoming complicated, Burak produced his own 

way to increase its understandability. In each step he used the shape produced in the previous one, and he 

showed this by adding to the end of the algebraic statement e.g. (a+b+c)
3
 = ... +(a+b)

3
 or (a+b+c+d+e)

3
 = … + 

(a+b+c+d)
3
. To comprehend this stage, it is helpful to separate and show each piece in the model, produced by 

Burak, using MS PowerPoint. Figure-19 and Figure-20 show how Burak constructed the model and how he did 

the transitions.  

 

 
Figure 19. The transition from (a+b+c)

3
 to (a+b+c+d)

3
 

 

Figure-19 shows the transition from (a+b+c)
3
 to (a+b+c+d)

3
, and Figure-20 shows the transition from 

(a+b+c+d)
3
 to (a+b+c+d+e)

3
. In Burak‟s models, lots of colors are used and this makes difficult to understand 

the model at first glance. However, when the open version of the models is examined in detail, it is seen that 

coloring is in fact helpful to understand the transition among the steps.   

 

 
Figure 20. Transition from (a+b+c+d)

3
 to  (a+b+c+d+e)

3 

 

He explained his thought process by giving further models until the addition of the five terms, and then he 

presented a model with layers for the addition of the k-many terms. In the layer model, it is revealed how the 

addition of the k-many terms on one corner can be obtained by using layers produced by reused models, 

constructed at the beginning of the second step. Besides, in this visual proof it is obviously presented that the 

next step is constructed based on the previous one, and the reasoning process could be observed as visual 

chaining. Burak predicted the visualization for k-terms would be very complicated, so he chose to show the 

expansion on one corner and he managed to present his idea in a very simple way. The approach in the VP-11 

involves the way used for unscaled presentation in the third step of VP-10. On the same unit cube, there are 

some different terms coming from expansion of the 3, 4, and 5 terms cubic summation. In reality, when a 

drawing is performed with different numerical values given to a, b, c, d, and e, it is not possible to obtain 

identical unit cubes. However, it is harder to construct a visual proof with such choice. Because of this, 

accepting this kind of approach in VP-11 (on the contrary to expansion of (a+b)
4 

in VP-10) can be regarded as 

more useful. The six steps (three steps in Figure-17 and three steps in Figure-18) in Figure-11 are investigated 

both individually and as a whole, which indicate no problems in transition for both correctness and visual 

structure. At the same time, it is obviously seen that these six steps are constructed around the same reasoning 

perspective. From this point of view, VP-11 is given three points from Code-1 and also Code-2, and labelled as 

sufficient. The Table-3 below is presented a summary of categories for each participants produced during the 

study. 
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Table 3. VPs in categories produced by participants 

 C.1 C.2 C.3  

V
P

-1
 

V
P

-2
 

V
P

-3
 

V
P

-4
 

V
P

-5
 

V
P

-6
 

V
P

-7
 

V
P

-8
 

V
P

-9
 

V
P

-1
0

 

V
P

-1
1

 

T
o

ta
l 

Mustafa  X  X X X      4 

Burak         X  X 2 

Erdem X           1 

Burak & Erdem   X    X X  X  4 
 

Label  A S A S S S A A S A S 6S & 5A 

Total 6 3 2  

C.1: category one, S: sufficient, A: acceptable, I: insufficient 

  

 

Written Discourse 
 

The aim of the written survey given at the end of the exercise was to identify the participants‟ thoughts on their 

experience. When the written answers were investigated, all three participants preferred to give short answers, 

therefore the answers given are presented here in full.  

 

The first question was “In your opinion, could VPs be helpful for learning mathematics?” The answers given for 

this question were as follows; 

 

Burak: Yes, to me it is absolutely true, because the identities that can be explained by complicated 

mathematical terms, computations and formulas are reduced to a visual and simple version.  

 

Mustafa: Yes, it is. When investigating the proofs without words or when proving the idea in your mind 

by visual proof, it helps to inculcate the formula, equation etc. which you are trying to prove at the 

same time. In geometry, it expands your horizon so that we can look at the shapes and questions in 

different perspectives. 

 

Erdem: The aim of the visual proofs is to use them when the proving is difficult to explain using 

mathematical operations. It is useful in this perspective. 

 

All three participants agreed that while learning mathematics VPs are helpful. Burak found them helpful in the 

visualization and simplification of mathematical terms, computations and formulas. Mustafa pointed out the 

contribution of VPs on permanent learning, and Erdem underlined that the proofs can be more easily explained 

through visualization. 

 

The other question was; “What did you feel when you were dealing with the visual proofs?”, for which the 

following answers were given; 

 

Burak: We realized that we could visualize the mathematics and that was enjoyable.  

 

Mustafa: I have to say that at the beginning I did not understand much. After that, I started working on 

basic proofs and began to target more difficult ones. During this time we thought about different 

versions of the proved formula. However, when we found unproven formula it was difficult to find a 

figure to interpret it, but there was great delight once we found it.  

 

Erdem: When dealing with the visual proofs we were constantly engaged with both mathematics and 

geometry. Because of this, our visualization and problem solving skills improved. 

 

When asked what they feel when dealing with the visual proofs, all the participants were positive. Burak 

explained his enjoyment while dealing with visualization of mathematics; on the other hand, Mustafa implied 

becoming clearer when he had gained more experience with visual proofs, so that he had great pleasure when he 

achieved the things which seemed very difficult at the beginning. However, Erdem indirectly expressed his 

positive feelings as he explained the acquisitions (visualization and problem solving). 
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In the third question “What is your reasoning when constructing the visual proofs?” the answers given were; 

 

Burak: We used our geometric ability. We used the reasoning pattern depending on the power of the 

identities in which geometric figures can be used to make it more correct and visual so that it can be 

expressed. 

 

Mustafa: At the beginning I was searching for a statement that has not been proven by visual means. 

After that I was thinking which geometric structure can be combined and interpreted. After that 

discovery, I started to construct it. 

 

Erdem: When constructing the visual proofs, we tried to produce geometrical shapes for coefficients 

and powers. 

 

When the participants were asked what reasoning processes were used when constructing their visual proofs, 

two main points were expressed. The first was the coefficients and powers of the mathematical structures, and 

the second was constructing an appropriate geometrical shape. The participants took into account the 

interrelation of these two points. 

 

In the fourth question, they were asked “For what concept or topic the visual proofs could be produced?” with 

these answers; 

 

Burak: It can be used for a whole expression that can be visualized in solid form in mathematics, and it 

can be truly expressed by using an object geometrically. The visual proofs can be used in mathematics 

when you can visualize something with your eyes in solid form and geometrically by using a solid 

when you express the properties truly, the visual proofs can be used. 

 

Mustafa: It can be produced more in exponential statements. For example, for (a+b)
2 

=a
2
+2ab+b

2
 the 

proof is easy but for (a+b)
1
=a+b the consecutive powers are difficult. For a mathematical statement like 

(a+b)
6
= a

6
+… +b

6
, it can be produced as a generalization type of visual proof. For instance, it can be 

generalized like (a+b)
n 
=a

n
+a

n-1
b+… +ab

n-1
+b

n
 and expressed as a geometric shape.  

 

Erdem: Visual proofs can be used for all mathematical proofs. 

 

According to the answers given by the participants, it is understood that they have an idea of the VPs broad area 

of usage. Burak and Erdem especially expressed that the VPs can be used for all mathematical properties that 

can be correlated with geometrical shapes, whereas Mustafa stated that they can be used for (a+b)
2
, (a+b)

6
 types 

of statements and for their generalizations.  

 

In the final question, it was asked “Which is the one VP you produced that you liked best?” for which the 

answers are presented below; 

 

Burak: I like the generalization that I produced like (a+b)
3
, (a+b+c)

3
, (a+b+c+d)

3
, (a+b+c+…+k)

3
, 

because It is absolutely practical and a sophisticated proof. 

 

Mustafa: I found better that expressing a statement in different, original and elegant ways. For example, 

in the expression (a+b)
2 

=a
2
+b

2
+2ab there could be more than five proofs. And this improves the 

diversity of mathematics.  

 

Erdem: Among the visual proofs that were produced by us, I preferred the more difficult ones, because 

I believe they improved our creativity. 

 

After the VP experiences of the participants, when asked which one they like more amongst those produced, 

Burak stated the proofs in C3, Mustafa picked proofs from C2 and Erdem expressed that he liked the most 

difficult ones. Burak specifically picked C3-VP2 and gave the reason as it was very practical and sophisticated. 

On the other hand, Mustafa stated that he liked the proofs from Category C2 because these proofs can be 

expressed more than one way like the expression (a+b)
2
, which can be shown in five different ways according to 

him, this improves the diversity of the mathematics. However, Erdem put a different perspective on it and said 

that the criteria for appreciating a proof are the level of difficulty for him. In the sessions where the researchers 

were with the participants, it was observed that the difficult examples are mostly in Category C3. It could be 

concluded that because of this, Erdem, who is similar to Burak, also likes the proofs in Category C3, but the 
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reason that he liked the proofs in this category according to him, was that these proofs improved his creativity 

“more” than others.  

 

 

Discussion 
 

With regard to the VPs constructed by the students, it was seen that each of the three students constructed at 

least one VP on his own. In total, Mustafa participated in the construction of four VPs, five for Erdem, and six 

for Burak. All Mustafa‟s proofs were in Category one (C1), and all (VP-2, 4, 5, 6) were constructed by himself. 

Erdem constructed one VP on his own (C1.VP-1), and another four (C1.VP-3, C2.VP-7, 8, and C3.VP-10) in 

collaboration with Burak. Burak, on the other hand, constructed two VPs (C2.VP-9 and C3.VP-11) on his own, 

and other four with Erdem. By the end of the study, the students constructed six C1 VPs, three from C2, and two 

from C3, making a total of 11 VPs. However, in recognition that C3, VPs contained more than one modelling to 

show transition within, this number is in fact more than eleven. We believe that students‟ free reasoning and free 

activity conduct during the construction of the VPs improved their efficiency. Despite being undetermined at the 

beginning of the study, interestingly, the constructed proofs were self-categorized, and more than one visual 

proof was included under each category. All VPs produced by participants are considered acceptable and 

sufficient. For example, all proofs by Mustafa in C1.VP-2, 4, 5, 6, and all VPs by Burak himself (C2. VP-9 and 

C3. VP-11) are labelled as sufficient with top points from the each code category. Moreover, the VP-1 in C1 

produced by Erdem himself is labelled as acceptable, with two points from one of the Codes and three points 

from the other one. Burak and Erdem‟s proofs are all labelled as acceptable. There are no insufficient labelled 

proofs, which is given one point from one of the codes and two points from the other one. This shows that all 

produced visual proofs are successful. Moreover, researchers expected students to construct some independent 

examples, whereas students constructed unique proofs under three categories, each of which required advanced 

levels of analytical and geometrical reasoning. It is possible to explain this as follows. 

 

VPs under the first category included Pythagorean Theorem, second degree identities, and factorial equality. As 

seen, mathematical subjects included in the proofs are not based on a single subject and/or concept, yet vary. A 

closer look at the process of modelling proofs under this category shows that students benefitted from various 

techniques. We determined that three techniques used for C1. 

  

The first technique was based on creating a shape and modifying it within itself. The initially constructed shape 

visualizes a statement on the basis of relevant parts in a connected manner [we can call this “basic modification 

(step: change)”] (C1.VP-1). The second technique starts with taking a complete shape, and breaking it into 

pieces and then bringing all pieces back together in a desired form [we can call this “further modification (steps: 

break up-change-arrange-reunite)”] (C1.VP-2,4,5,6). The third technique includes going from parts to the 

whole using inductive reasoning, where a formal unit is selected (e.g. point, circle, cube, sphere) and planar 

structure is constructed using this unit. Then a visual model is constructed with the help of the relation between 

this unit and the structure (border-area relation) [we can call this “inductive basic construction”] (C1.VP-3). The 

goal of naming these techniques is merely for the purposes of formalization, summarizing the technique. 

Coverage of the given names is limited to the VP examples given in this study, and does not have any purpose 

for generalization or conceptualization since further studies should be conducted for such an effort. Considering 

the diversity of subject/concept for C1 as well as diversity in modelling technique, it is possible to say that 

examples under this category are successful (4 sufficient and 2 acceptable) proofs that require advanced 

geometrical reasoning.  

 

All VPs under the second category (C2) are products of an approach on how one statement may be proved 

visually in different manners. The first proof under this category is similar to the VP structure in Nelsen‟s book 

and the other examples found in the literature. The first VP (C2.VP-7) was constructed by forming a shape for 

certain numbers (first three or four terms), creating a whole 3D shape by using the first shape, and then 

achieving the desired statement through volume of the latter shape (one sixth). The second proof in the category 

keeps the reasoning used in the first one, and aims at visual modelling within a simpler planar shape. Following 

the construction of the first VP, some students continued to think about the given mathematical statement. They 

discussed alternative modelling ways by keeping their approach, and realized that they could construct a simpler 

model. Burak played a more active role in this process. In our opinion, their preference for simplification and a 

simpler visualization is an indicator of their advancement in mathematical thinking. Despite being 9
th

 graders, 

their cognitive capacities allowed for flexible transitions. In the third VP, the situation became more advanced in 

its simplest form. C2.VP-9 is a proof constructed by Burak. Burak‟s continuance on a mathematical statement 

and on sharing information with Erdem and other group members in the process led to a deeper visual 

perspective, and exemplified how it is possible to achieve a better visual model (in terms of simplicity) by using 
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the initial VP construction technique. Beyond doubt, one of the important issues here is students‟ collaborative 

skills to work together in a mildly competitive environment. The researchers‟ observations showed that the 

students did not prefer forestalling or acting completely alone in their work. They worked individually or as a 

pair in the construction of the VPs, yet all three shared their thoughts and conducted discussions during the 

process. This collaboration contributed to the construction of better VPs. Way of reasoning in this category (C2) 

is in fact similar to a characteristic included in mathematicians‟ behavioral style. In mathematics, generally, a 

product and/or object considered as chic or aesthetic is claimed to be the most appropriate, correct and 

acceptable demonstration and/or solution with least materials (e.g. operations, steps). This is particularly 

expressed in description of Euler‟s proof for infinity of prime numbers as one of the most aesthetic and chic 

proofs ever (Mestrovic, 2010). The students, in a way, constructed (in sense of approach and the aimed point) 

elegant proofs at a visual level under the second category. Hence, it is possible to say that models under this 

category are qualified (1 sufficient and 2 acceptable) proofs involving advanced analytical and geometrical 

reasoning. The students‟ construction of an initial idea and then advancing it are based on analytical reasoning, 

while transferring this idea to visual models is based on geometric reasoning. 

 

Proofs under the third category show how VPs are used in order to make generalizations. The previous category 

became influential in the construction of the VPs under this category. Models under the first category are 

independent, whereas constructing VPs connected to each other came out in the second category. Even though 

Mustafa did not tangibly demonstrate on a proof during their work under the first category, he expressed that a 

mathematical statement might be demonstrated more than once. This idea triggered the approach followed in the 

other categories. Burak played a very important and dominant role in realizing this idea. We did not examine 

this issue since we were not concerned with students‟ differences, their success or influencing each other in the 

construction of VPs. Our main goal was to examine the VPs constructed by a small group of mathematically 

capable students with their VP experience on the basis of free study and thinking, to observe the construction 

process in general terms, and to obtain ideas about VPs on the basis of our experiences. Our personal 

experiences, information shared with pre-service teachers in our classes, as well as small scale instructional 

tasks given to them, have shown that even they had problems constructing VPs and even with understanding 

some VPs from time to time. Therefore our primary objective in planning this study was not to assess the 

students work on an individual or comparative basis, but to conduct a product-based holistic assessment process 

(by focusing on the constructed VPs and analyzing them structurally within categories). Nonetheless, our 

findings have led us to think that studies conducted to reveal individual successes and factors that influence this 

success (e.g. construction technique, way of thinking, quality of pre-examples/ models used, questions posed to 

themselves or to each other for transformations) can be administered to gifted or other students. Proofs under the 

third category carry the way of thinking that was valid under the second category, to a further level. 

 

C3.VP-10 includes visual modelling of three mathematical statements. The statements are 2
nd

, 3
rd

, and 4
th

 power 

expansion of (a+b). Three different VPs are used for each statement, and are not connected to each other. The 

model showing the expansion of (a+b)
3
 is similar to C2.VP-9 in terms of form. However, mathematical 

statements represented by form are completely different. The idea of a consecutive triple, which shows the 

simple version of a generalization, is authentic; it means it is correct as a way of thinking, and involves 

creativity. Nevertheless, since the third model is not completely correct and involves missing pieces, it led to a 

failure to transfer this idea into a visual model. We think that students‟ efforts to construct a model for a certain 

pair of numbers lead to their insistence to achieve a result on the same shape instead of thinking about several 

various shapes. Despite the fact that the first model from the third category comes from an original thought, the 

last visual model created involves limited confirmation and a non-compliant visual structure. 

 

C3.VP-11 model is another example involving three dimensions in addition to C2.VP-7; however this model is 

more comprehensive owing to its structure. It is not easy both to imagine the steps in this model and to transfer 

it to MS PowerPoint; yet, Burak has managed to do it. In this proof, we are able to see Burak‟s advancement in 

analytical reasoning in his development of a generalization idea and transforming it to an embraced form on 

algebraic statements for expanding them. Expansion of selected algebraic statements (a+b)
3
, (a+b+c)

3
 or 

(a+b+c+d+e)
3
 statements that can easily be found in books. Yet, Burak very successfully used these statements 

both together and associated with each other, as well as making this association in a way of his choosing. 

Burak‟s use of the algebraic statement from the previous step as the last term, represents his advancement in 

analytical reasoning. Burak has reflected his analytical perspective in accordance with his own geometrical 

reasoning. He thought of showing the steps following the fifth power on a single corner for a k power at VP, and 

thus simplified the complicated visual structure. Visual models under this category are successful (1 sufficient 

and 1 acceptable) visual models since they involve the idea of generalization, cover modelling of more than one 

statement, and can be drawn virtually using MS PowerPoint. 
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Based on the written discourse, it is seen that all three students have had positive experiences with the VPs, and 

had a productive and efficient process. Among the students, Burak received very efficient results, both from his 

individual studies and also from his work with Erdem. He constructed two VPs on his own, and four in 

collaboration with Erdem. From his question responses, it may be said that he believes that geometrical 

formation of complicated mathematical facts may facilitate the understanding of mathematics. Having 

emphasized that he enjoyed this visualization process, Burak has stated that he mostly liked the VPs under the 

third category, which aimed at making generalization and are scarcely observed in the literature when compared 

to others. Erdem, who conducted productive work in collaboration with Burak, has also shared similar thoughts 

and emotions. Erdem claimed that it is easier to understand proofs, which are mathematically difficult to 

understand, through visualizations. He also stated, while explaining the strategies he used in constructing VPs, 

that he has taken into consideration coefficients and degrees of the mathematical equalities and tried to 

transform these statements into geometric structures. Having stated that such practices could be used for all 

mathematical proofs, Erdem has also emphasized that such educational activity improved his creativeness. 

Mustafa, on the other hand, worked mostly alone and constructed three VPs. Mustafa stated that VP 

construction has helped him to look for different solutions to the problems he encountered. Mustafa stated that 

he liked constructing different VPs for a proof because it increased diversity in his mathematics. 

 

Consequently, comments of the participants show that all participants have considered VPs as beneficial to 

facilitating the construction of mathematical proofs and as equally important since they allow the integration of 

geometric knowledge. They said that they had difficulty dealing with such proofs, yet they have enjoyed it, and 

claimed that constructing proofs helped them to improve their skills in looking for different solutions to the 

problems. Mustafa and Erdem stated that such proofs can be applied to almost all mathematical concepts, and 

Burak added that they can be applied to any concept which may be expressed in geometrical terms. Burak and 

Erdem preferred more difficult VPs targeting generalization, whereas Mustafa liked the process of constructing 

different VPs for the same proof, diversifying VPs under the second category. 

 

The main findings of this study are the categories of students‟ examples on visual proofs, which they gave for 

the theorems by using visual thinking and thoughts about the visual proofs. As the participants in this study 

were gifted students, they had limited problems in constructing the visual proofs. There are some studies which 

specifically selected gifted students, like in the current study, because the concept of visual proofs requires more 

integrated knowledge to construct visual proofs for a theorem (Sriraman, 2004; Stylianou & Pitta-Pantazi, 2002; 

Lee, 2005). On the other hand, this does not mean that to understand a proof, students should be gifted. On the 

contrary, everybody has the ability to understand the proof of theorems, since theorems are the essential 

elements of mathematics. 

 

According to the participants‟ reflections on the visual proofs, they believe that it is easy to understand the 

theorems by constructing visual proofs for each of them. They believe that both geometric knowledge and 

mathematics are combined to use and construct these kinds of proofs. According to extended case study results, 

Krutetskii (1976) stated that there are three kinds of problem solvers; verbal-logical, visual-pictorial and 

harmonic thinkers. The visual proofs could be helpful for students who are visual-pictorial kinds of thinkers. 

Yet, the various ways of proving, such as verbal, visual or formal, may be a factor in understanding proofs and 

in learning about proving in general (ICMI, 2009). 

 

Although there are some categories and stages for formal proofs, there is no clear framework or stages for visual 

proof. For the formal proofs, Harel and Sowder (1998) provide taxonomy in sequential order such as, empirical 

proof, external-based proof, and analytic proof. Similarly, Chin and Tall (2000) presented a hierarchy in stages 

which are “concept image-based, definition-based, theorem-based and compressed concept-based”. However, 

without any aim regarding generalization in the current study, the students constructed proofs clustered into 

three categories, known as Category 1, Category 2 and Category 3. They were found to be accidentally in 

sequential order. This means that the Category 1 is the simplest category, in that every participant constructed at 

least one Category 1 type visual proof. In this category, students build their own visual proofs either at the 

beginning of the study, or in their spare time around the middle of the study. The participants used three 

strategies to construct visual proofs in Category 1, known as „basic modification‟, „further modification‟ and 

„inductive basic construction‟. In a research study, Flores (1992) discussed how VPs could be used during the 

inductive proof to improve a student‟s initial step and inductive step for some examples. He also admitted that 

in his problem solving and proofs course, he used these kinds of examples and saw that students use diagrams in 

these kinds of examples. He added that “Such diagrams (VPs) can be used to introduce students to proofs by 

mathematical induction, in a way that the proof both explains and proves” (Flores, 1992, p.394). The Category 

2 is a bit more difficult than the first because they have to construct another visual proof for the same theorem; 

they have to think differently for the same theorem. The participants were very creative in this category, 
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especially as they constructed a visual proof for the theorem in both two and three dimensional and sequential 

visualization. The last and most difficult category is Category 3, which requires them to achieve generalization 

by using the visual proofs. Although Thornton (2008) underlined that there is a real danger that students may 

miss the point and fail to develop generalized thinking, these Category 3 exercises attempt to develop students 

to accomplish generalization of theorems using visual proofs. 

 

As a result, the three students who produced visual modeling also had the ability to produce visual proofs. 

Especially in the second and third category, visual proofs demand very high performance to achieve success. 

The participants were successful, not only in generating ideas about theorems, but also in the construction of 

concrete models for them. While considering students‟ success, the researchers have not only focused on 

whether the VPs constructed by students are sufficient or acceptable. The important criteria considered by the 

researchers have included way of thinking, method of transferring their thinking to the models, whether they 

continue to use these methods consistently, and whether the analytical perspective is flexible and progressional. 

Because of this, although some VPs have small mistakes and some limitations, they are considered successful 

from a holistic perspective. According to the answers for the questions asked of the participants, they tried to 

think differently to construct a visual proof; and in doing so, they believed that their problem solving abilities 

improved. Aligned with this result, Hanna (2008) suggested that proving process forces students to adopt 

different ways to construct a proof, and from an educational perspective, it helps students to use proofs as a tool 

to understand different aspects of mathematics. According to Hanna (2008), mathematicians believe that to 

prove a theorem already proven before helps to broaden to their “toolbox” and achieve more elegance in the 

way to show proof of the theorem. According to Zeilberger (1995, p.3) “The value of a proof of an outstanding 

conjecture should be judged, not by its cleverness and elegance, and not even by its “explanatory power”, but 

by the extent in which it enlarges our toolbox”. Therefore, the participants of the current study claimed in their 

way that visual proofs help them to get a “broader toolbox”. 

 

As Thornton (2008) explained, visual thinking, for any forms like concrete images, pattern images or dynamic 

images, plays a key role in the development of students‟ mathematical power. The ability to visualize is 

essential for success in mathematics, especially in solving problems, because as Polya (1945) points out, one of 

the pedagogical advices to solve any problem is “draw a figure”. Alsina and Nelsen (2010) clearly stated that the 

VPs have a critical role in mathematics classrooms, from the beginning of education right through to higher 

education. 

 

 

Conclusion 
 

Our study concludes that students have been successful in exhibiting different viewpoints for the construction of 

proofs, in constructing authentic non-verbal proofs, and in presenting their proofs visually. The fundamental 

basis for this conclusion is the high number and diversity of VPs constructed by the students, as well as the 

construction of authentic models with different techniques for all three categories. Students have been successful 

not merely in understanding and interpreting VPs (a skill which includes several sub-components), but also in 

their construction. It is possible to see components required for VPs in Bardelle‟s (2009) following statement: 

The production or the understanding of a diagrammatic [visual] proof involves constructing and treating 

(detaching, reversing, superposing, translating …) figures and extracting information from them (p.252). 

 

At the same time, written discourse showed that all three students have had positive experiences with the VPs, 

and had a productive and efficient process. Hence, although students have never met VP before, they achieved 

to reach this level at the end of the research. It is believed that this study with the gifted students has obviously 

contributed to them positively.  

 

Although there is no clear framework or stages for visual proof, there are some for formal proofs. In the current 

study, our aim is not to make a generalization or conceptualization of the categories for visual proofs; we only 

aim to obtain and understand procedures used by the participants while constructing their VPs. We have 

revealed that there are three sequential categories: basic modification (C1), further modification (C2), and 

inductive basic construction (C3). For further studies, generalization and conceptualizations of these categories 

should be tested. Moreover, the framework produced in this study might also be used in other studies to be 

conducted for examination and analysis of visual proofs. Additionally, we recommended that while conducting 

research studies about producing visual proofs, qualitative data set (e.g. observation, field notes and discourse 

analysis) should be used to enrich interpretation of the whole concept of visual proofs.  

 

 



195 
 

Int J Educ Math Sci Technol 

References 

 

Alsina, C. & Nelsen, R. B. (2006). Math made visual. Creating images for understanding mathematics. The 

Mathematical Association of America, Washington, DC.   

Alsina, C. & Nelsen, R. B. (2010). An invitation to proofs without words. European Journal of Pure and 

Applied Mathematics, 3(1), 118-127. 

Ball, D. L., Hoyles, C., Jahnke, H. N. & Movshovits-Hadar, N. (2002). ICM, Vol. III 1-3, 907-920.  

Bardelle, C. (2009). Visual Proofs: An Experiment, Proceedings of CERME 6, January 28th-February 1st, Lyon 

France, Vol X, 251-260. 

Bell, C. J. (2011). Proofs without Words: A Visual Application of Reasoning and Proof, Mathematics Teacher, 

9(104), 690-695. 

Borwein, P. & Jörgenson, L. (1997). Visible structures in number theory. Retrieved from 

http://www.maa.org/sites/default/files/images/images/upload_library/22/Ford/Borwein897-910.pdf on 

4th of February, 2015.  

Casselman, B. (2000). Pictures and proofs. Notices of the American Mathematical Society, 47(10), 1257-1266. 

Chin, E. & Lin, F. (2009). A comparative study on junior high school students‟ proof conceptions in algebra 

between Taiwan and the UK, Journal of Mathematics Education, 2(2), 52-67. 

Chin, E. T., &. Tall, D. O. (2000). Making, having and compressing formal mathematical concepts. In T. 

Nakahara, & M. Koyama (eds.), Proceedings of the 24th Conference of the International Group for the 

Psychology of Mathematics Education, 2, 177–184.  

Dickerson, D. S. & Doerr, H. M. (2014). High school mathematics teachers‟ perspectives on the purposes of 

mathematical proof in school mathematics. Mathematics Education Research Journal, 26(4), 711–733. 

doi: 10.1007/s13394-013-0091-6 

Doruk, B. K., Kıymaz, Y. & Horzum, T. (2012). İspat yapma ve ispatta somut modelden yararlanma üzerine 

sınıf öğretmeni adaylarının görüşleri. X. Ulusal Fen ve Matematik Eğitimi Kongresi, Niğde 

Flores, A. (1992). A geometrical approach no mathematical induction: Proofs that explain. PRIMUS, Vol. II(4), 

393-400.  

Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational Studies in Mathematics, 

Special issue on “Proof in Dynamic Geometry Environments”, 44(1-2), 5-23.  

Hanna, G. (2008). Beyond verification: Proof can teach new methods. Retrieved from 

http://www.unige.ch/math/EnsMath/Rome2008/ WG1/Papers/HANNA.pdf. on 5th of February 2015. 

Hanna, G. & Sidoli, N. (2007). Visualization and proof: A brief survey of philosophical perspectives. 

International Reviews on Mathematical Education, ZDM, 39, 73-78. 

Hanna, G., de Villiers, M., Arzarello, F., Dreyfus, T., Durand-Guerrier, V., Jahnke, H. N., Lin, F. L., Selden, A., 

Tall, D. & Yevdokimov, O. (2009). Discussion Document. In F. Lin, F. Hsieh, G. Hanna, & M. de 

Villiers (Eds.), Proceedings of the 19th International Commission on Mathematical Instruction: Proof 

and Proving in Mathematics Education (vol. 1). National Taiwan Normal University, Taipei, Taiwan: 

ICMI Study Series 19, Springer. 

Harel, G., & Sowder, L. (1998). Students‟ proof schemes. Research on Collegiate Mathematics Education, Vol. 

III. In E. Dubinsky, A. Schoenfeld, & J. Kaput (Eds.), AMS, 234-283. Retrieved from 

http://www.math.ucsd.edu/~harel/publications/Downloadable/Students'%20Proof%20Schemes.pdf on 

3rd of February 2015. 

Kadunz, G. (2006). Experiments with diagrams- A semiotic approach. ZDM, 38(6), 445-455. 

Knuth, E. J. (2002a). Proof as a tool for learning mathematics, Mathematics Teacher, 95(7), 486-90. 

Knuth, E. J. (2002b). Teachers‟ conceptions of proof in the context of secondary school mathematics. Journal of 

Mathematics Teacher Education. 5, 61-88.  

Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren. Chicago: University of 

Chicago Press. Lee, K.H. (2005). Mathematically gifted students‟ geometrical Reasoning and informal 

proof. In H.L. Chick & J.L. Vincent (Eds.). Proceedings of the 29th Conference of the International 

Group for the Psychology of Mathematics Education, 3, 241-248. Melbourne: PME. 

Landeuer, E. G. (1985). Proof without words: Square of an odd positive integer. Mathematics Magazine, 58(4), 

203. 

Maanen, J. V. (2006). Diagrams and mathematical reasoning: Some points, lines and figures. Journal of British 

Society for the History of Mathematics, 21(2), 97-101. 

Mestrovic, R. (2010) Euclid‟s theorem on the infinitude of primes: a historical survey of its proofs (300 B.C.–

2012.) Mathematics Subject Classification. Retrieved from http://arxiv.org/pdf/1202.3670.pdf on 3rd of 

February 2015 

Nelsen, R. B. (1993). Proofs without words: Exercises in visual thinking. The Mathematical Association of 

America, Washington DC. 

http://www.maa.org/sites/default/files/images/images/upload_library/22/Ford/Borwein897-910.pdf
http://www.math.ucsd.edu/~harel/publications/Downloadable/Students'%20Proof%20Schemes.pdf


196        Ugurel, Morali, Karahan & Boz 

zge 
 

Nolt, J., Rohatyn, D. & Varzi, A. (1998). Schaum’s outline of theory and problems of Logic (2nd ed.). New 

York: McGraw-Hill. 

Polya, G. (1945). How to solve it: A new aspect of mathematical method. Princeton, NJ: Princeton University 

Press. 

Schoenfeld, A. (1994). Reflections on doing and teaching Mathematics. In A. Schoenfeld (Ed.). Mathematical 

Thinking and Problem Solving. (pp. 53-69). Hillsdale, NJ: Lawrence Erlbaum Associates. 

Segal, J. (1999). Learning about mathematical proof: conviction and validity. Journal of Mathematical 

Behavior, 18, 191-210. 

Siu, M. K. (1993). Proof and pedagogy in ancient China: Examples from Liu Hui‟s commentary on Jiu Zhang 

Suan Shu, Educational Studies in Mathematics, 24(4), 345-357. 

Smith, J. C. (2006). A sense making approach to proof: Strategies of students in traditional and problem-based 

number theory courses. Journal of Mathematical Behavior, 25, 73-90. 

Sriraman, B. (2004). Gifted ninth graders' notions of proof: Investigating parallels in approaches of 

mathematically gifted students and professional mathematicians, Journal for the Education of the 

Gifted. 27(4), 267-292.  

Stylianou, D. & Pitta-Pantazi, D. (2002). Visualization and high achievement in mathematics: A critical look at 

successful visualization strategies. In F. Hitt (Ed.), Representations and mathematics visualization, pp. 

31-46. Mexico: Cinvestav-IPN 

Tall, D. (1998). The cognitive development of Proof: Is Mathematical Proof for all or for some? Conference of 

the University of Chicago School Mathematics Project, August, USA. 

Thornton, S. (2008). A Picture is worth a thousand words. Retrieved from 

http://math.unipa.it/~grim/AThornton251.PDF on 4th of February 2015. 

Waring, S. (2008). Teaching proof at KS4, The Montana Mathematics Enthusiast, 5(1), 155-162. 

Zeilberger, D. (1995). Proof of the alternating sign matrix conjecture. http://arxiv.org/pdf/math/9407211v1.pdf 

 

 

Author Information 
Isikhan Ugurel 
Dokuz Eylul University 

Ugur Mumcu St. 135 Av. No.5, 35150 Buca-Izmir, Turkey 

Contact e-mail: isikhan.ugurel@deu.edu.tr  

H. Sevgi Morali 
Dokuz Eylul University 

Ugur Mumcu St. 135 Av. No.5, 35150 Buca- Izmir, Turkey 

 

 

Ozge Karahan 
Dokuz Eylul University 

Ugur Mumcu St. 135 Av. No.5, 35150 Buca- Izmir, Turkey 

 

Burcak Boz 
Mugla Sıtkı Koçman University  

T-Block 48000 Kötekli-Mugla, Turkey 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

http://math.unipa.it/~grim/AThornton251.PDF


197 
 

Int J Educ Math Sci Technol 

Appendix 
 

(1) If one side of the square in the squared notebooks accepted as 1 unit, then the right triangles with sides 3-4-

5; 6-8-10 and 7-24-25 in VP-1 can be modelled as follows. The last figure is drawn by GeoGebra. 

  

 

  
 

(2) Model for VP-3 for n=4                                      (3) Model for VP-7 for n=1, 2, 3 and 4 

   
 

(4) Different Models for VP-9 for different n‟s 

 


