

www.ijemst.net

STEM-based Teaching Materials to Support Scientific Literacy and Sustainability Awareness: A Critical **Review**

Rizky Agassy Sihombing 🛄 Universitas Pendidikan Indonesia, Indonesia

Diana Rochintaniawati ២ Universitas Pendidikan Indonesia, Indonesia

Rika Rafikah Agustin ២ Universitas Pendidikan Indonesia, Indonesia

Muslim ២ Universitas Pendidikan Indonesia, Indonesia

Taufik Rahman 匝 Universitas Pendidikan Indonesia, Indonesia

To cite this article:

Sihombing, R.A., Rochintaniawati, D., Agustin, R.R., Muslim, & Rahman, T. (2025). STEM-based teaching materials to support scientific literacy and sustainability awareness: A critical review. International Journal of Education in Mathematics, Science, and Technology (IJEMST), 13(3), 597-622. https://doi.org/10.46328/ijemst.4790

The International Journal of Education in Mathematics, Science, and Technology (IJEMST) is a peerreviewed scholarly online journal. This article may be used for research, teaching, and private study purposes. Authors alone are responsible for the contents of their articles. The journal owns the copyright of the articles. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of the research material. All authors are requested to disclose any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations regarding the submitted work.

EX NO 50 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

International Journal of Education in Mathematics, Science and Technology

2025, Vol. 13, No. 3, 597-622

https://doi.org/10.46328/ijemst.4790

STEM-based Teaching Materials to Support Scientific Literacy and Sustainability Awareness: A Critical Review

Rizky Agassy Sihombing, Diana Rochintaniawati, Rika Rafikah Agustin, Muslim, Taufik Rahman

Article Info	Abstract
Article History	STEM education, an innovative approach fostering Science, Technology,
Received: 11 December 2024 Accepted: 8 May 2025	Engineering, and Mathematics skills, stands as an alternative method to cultivate 21st-century competencies. It emphasizes innovation while teaching materials serve as resources aiding instructors in classroom teaching and learning activities. An analysis of published articles in national and international journals focused on examining trends in STEM education and teaching materials. Out of 18 collected
<i>Keywords</i> STEM-Based Teaching materials Scientific literacy Sustainability awareness Critical analysis review	articles meeting specific criteria, findings underscore the capacity of STEM education and associated teaching materials to enhance scientific literacy and promote sustainability awareness. Notably, when leveraging STEM-based teaching materials, significant advancements in these areas are evident. However, further empirical research is warranted to comprehensively explore the potential of STEM-based Teaching Materials in augmenting scientific literacy and fostering sustainability awareness.

Introduction

In the pursuit of elevating scientific literacy among students, our research delves into a critical examination of the prevailing challenges and innovative solutions at the intersection of STEM education and teaching materials. The landscape of science education faces a significant hurdle as studies, including those by Jufrida et al., (2019), Adnan et al., (2021), Suprapto et al., (2022), and Kaur and Kaur (2022), consistently reveal suboptimal levels of achievement in scientific literacy. Factors that affect science literacy are divided into internal factors and external factors. One of the factors is due to the lack of facilities in schools for lessons that train science literacy, lack of use of teaching materials, interactive learning media can affect science literacy skills (Jufrida et al., 2019; Suprapto et al., 2020). Therefore, it is necessary to develop a science literacy E-book or interactive multimedia supported by learning tools such as syllabus, lesson plans, worksheets, and assessment sheets (Widodo et al., 2020; Adnan et al., 2021; Suprapto et al., 2022).

In addition to interactive teaching materials, teachers are encouraged to start introducing and teaching material using various strategies with a science literacy aspect, including teaching material through experiments that can stimulate higher-level thinking and are contextual in nature, so that students' science literacy skills and new

literacy can improve properly (Asrizal et al., 2023; Muhlis et al., 2024). Velázquez & Rivas, (2020); Campbell et al., (2021); Asrizal et al., (2023) highlighted the potential of science learning in improving new literacy and sustainability awareness through a STEM approach.

The STEM approach involves the integration of science, technology, engineering, and mathematics, as outlined by Torlakson (2014). This method aims to harmoniously combine these four disciplines by addressing real-world problems, aligning learning with practical problem-solving applicable in daily and professional life. By integrating STEM into education, it facilitates the development of 21st-century skills through contextualized learning that directly relates to real-life challenges. Furthermore, the integration of STEM offers teachers and students more pertinent and engaging learning experiences, ultimately boosting student motivation and academic achievement, as noted by the National Research Council (NRC, 2014). Bybee (2013) suggests that the development of educational science should begin to consider STEM learning as a crucial way to address the challenges and demands of this century. The STEM approach in education is recognized as a strategy widely used by teachers to improve students' science literacy, and to integrate sustainable education that focuses on environmental awareness of understanding related to SDGs (Velázquez & Rivas, 2020; Campbell et al., 2022).

The critical analysis review intends to delve into the prevalent themes within STEM education and teaching materials research pertaining to science learning between October 2019 and January 2024. It seeks to scrutinize the implementation of STEM education and teaching materials in the context of science learning, with a specific focus on scholarly articles published in Scopus journals over the last five years. This review aims to identify factors that predict scientific literacy and sustainability awareness while proposing potential directions for future research in this domain.

The article structure commences with an introductory section, providing a comprehensive overview of STEM education and teaching materials. Subsequently, it delineates the methodology employed for conducting the critical analysis review. Following this, the review's core section unfolds, detailing the findings and engaging in discussions around the most explored topics in STEM education and teaching materials research concerning science learning. This section critically examines the implementation aspects of STEM education and teaching materials in the context of science learning.

Further, the review dedicates a segment to scrutinize the predictors of students' scientific literacy and sustainability awareness based on an analysis of recent scientific research articles from Scopus journals. It explores and discusses these predictors to understand their implications for enhancing science learning outcomes. Finally, the review concludes by synthesizing the key takeaways, summarizing the findings, and offering suggestions for future research trajectories in this dynamic area of STEM education and teaching materials.

As researchers embark on this thorough investigation, their primary objective is not only to identify the current shortcomings and challenges but also to offer practical insights that can pave the way for a transformative shift in science education. By closely examining the complex interplay between STEM (Science, Technology, Engineering, and Mathematics) and educational resources, the goal is to contribute to the creation of a robust and

revolutionary educational framework. This framework aims not only to address the current deficiencies in scientific literacy but also to foster a profound comprehension of sustainability, thereby nurturing thoughtful and skilled leaders for the future.

Method

Research Design

A critical analysis review represents a thorough and meticulous evaluation of a subject matter undertaken by scholars within a specific field. These researchers utilized methodologies commonly employed in this type of research, aiming to furnish readers with a comprehensive understanding of the existing knowledge on a particular topic while proposing potential avenues for future research. Additionally, the researchers endeavored to critically scrutinize deficiencies in current theories, methodologies, and conceptual or empirical findings within the subject area. This methodical evaluation involves scrutinizing the subject's components, strengths, and weaknesses, with the goal of providing an insightful and nuanced interpretation. The researchers aim to contribute to the existing body of knowledge by offering a comprehensive and well-founded perspective on the subject (Wallace and Wray, 2016; Cottrell, 2017). The choice of this method is justified as it allows for a thorough and in-depth exploration of STEM-based teaching materials, ensuring a meticulous examination of their impact on scientific literacy and sustainability awareness.

The researchers carried out the investigation in the form of a "state-of-the-art review" (Grant & Booth, 2009) and utilized methodologies commonly associated with this type of research. The main objective was to provide readers with an understanding of the existing knowledge on a particular topic and to suggest potential directions for future research. As a result, the study did not aim to conduct an exhaustive search, offer a retrospective analysis of past research, or establish a definitive set of best practices within the field. Rather, the emphasis was on critically assessing deficiencies in current theoretical frameworks, research methodologies, and conceptual or empirical findings. Employing a critical analysis review with a content analysis approach, the study examined scientific articles related to STEM education, teaching materials, scientific literacy, and sustainability awareness in science subjects, from October 2019 to January 2024, with a focus on overseas context.

Population and Sampling

The research sample comprises 18 articles sourced from the period between October 2019 and January 2024, extracted from Google Scholar, Garuda, and SCOPUS databases within the realm of STEM education and teaching materials. These articles were identified using specific keywords such as "STEM Education," "Teaching Materials," and "STEM-based Teaching Materials."

Data Collections Process

The review process involved several key stages:

1. Data Selection: This step included formulating research questions and identifying articles relevant to the study.

Criteria for inclusion were established, as outlined in Table 1. Articles were screened across multiple databases (Google Scholar, Garuda, and SCOPUS) using Publish or Perish software. Researchers narrowed down the selection based on the predetermined criteria, resulting in the examination and analysis of 18 manuscripts. The review process involved assessing abstracts initially and then comprehensively reading the entire content of the selected articles.

2. Coding Instrument Adaptation: The researchers utilized a Paper Classification Form (PCF) developed by Kizilaslan et al., (2012) as the basis for their coding instrument. The PCF, known for its validity and reliability, encompassed various indicators such as title, author details, journal information, publication year, journal type, language, indexing, primary discipline, research methodologies, data collection methods, sample details, and data analysis techniques. Additionally, researchers created a data matrix containing information on research purposes, integrated learning models, thematic elements, and key findings. The collected data underwent analysis using percentage calculations.

3. Identifying Article Patterns: The researchers aimed to identify patterns within the selected articles, particularly focusing on findings, integration of STEM education, teaching materials, and the skills attained. These patterns were synthesized to address the research questions posed in the study.

4. Synthesizing Patterns to Address Research Questions: Figure 1 illustrates the process of synthesizing identified patterns to effectively address the research questions established in the study. This step involved integrating and analyzing the patterns identified across the selected articles to provide comprehensive answers to the research inquiries.

Data Analysis

During this phase, the researchers conducted calculations to determine the percentage distribution of each finding obtained from the selected articles. This information was organized and presented in Table 1.

No.	Category	Inclusion Criteria	Exclusion Criteria
1.	Type of	Articles published in journals	Articles published in conference proceedings,
	Publication		books, websites, blogs, and other similar
			sources.
2.	Journal	International journal	National journal not accredited or accredited by
	Specifications	minimum indexed Scopus.	Sinta 2 until 5.
3.	Publication Year	2019 - 2024	Less than 2019
4.	Research Setting	Qualitative (Descriptive),	Systematic Literature, Literature Review,
		Quantitative (Experimental),	Comparative Study, Phenomenology.
		Mixed Method, Research and	
		Development.	
5.	Research	A collaboration of	Only Indonesians
	Nationality	Indonesians and Foreigners	
6.	Independent	STEM or Teaching Materials	Not STEM or Teaching Materials

Table 1. Inclusion and Exclusion Criteria

	Category	Inclusion Criteria	Exclusion Criteria
	Variable		
7.	Field	Science (Chemistry, Physics, and Biology)	Outside of science
8.	Research Subject	Students informal education	Students and Teachers in non-traditional
		includes secondary school,	educational settings, such as special needs
		senior high school	schools or nonformal schools, were part of the
			study. Additionally, participants engaged in
			informal education covered a wide range from
			early childhood schools, elementary & high
			schools, to universities.

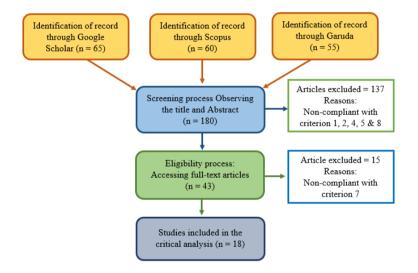


Figure 1. Flowchart of the article selection procedure

Findings

This critical review analyzes articles published between October 2019 and January 2024 that were conducted internationally. The distribution of these articles was based on specific inclusion criteria, which included nationally accredited journals categorized as Sinta 1, as well as international journals indexed by Scopus under various quartiles (Q1, Q2, Q3, and Q4), as detailed in Table 2.

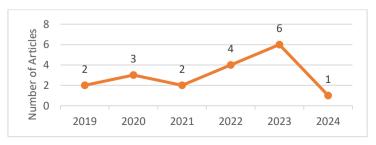


Figure 2. Distribution of Article by Year Published

Findings from the analysis revealed the diverse utilization of research methods in STEM education, teaching materials, scientific literacy, and sustainability awareness studies across different countries. Specifically, research in these domains has been conducted in various countries worldwide. The distribution of STEM, teaching materials, scientific literacy, and sustainability awareness research in science learning, depicted in Figure 3, highlights Indonesia as the most prevalent location for the implementation of STEM education, teaching materials, and their integration into science learning. Moreover, several other countries have also begun adopting and implementing STEM practices, as depicted in Figure 3.

Country of	Quartile*	SJR	H-
Origin		2022**	index
Serbia	Q3	0.23	17
Turkey	Q4	0.18	7
United Kingdom	Q1	1.17	57
Austria	Q2	0.54	39
United Kingdom	Q3	0.26	35
Switzerland	Q1	0.66	136
Indonesia	Q3	0.31	14
Turkey	Q2	0.51	50
Netherlands	Q1	33	1.07
Netherlands	Q1	0.61	69
Czech Republic	Q3	0.29	9
Indonesia	Q3	0.36	23
Switzerland	Q2	0.83	167
Switzerland	Q2	0.61	32
	Origin Serbia Turkey United Kingdom Austria United Kingdom Switzerland Indonesia Turkey Netherlands Netherlands Czech Republic Indonesia Switzerland	OriginSerbiaQ3TurkeyQ4United KingdomQ1AustriaQ2United KingdomQ3SwitzerlandQ1IndonesiaQ3TurkeyQ2NetherlandsQ1NetherlandsQ1Czech RepublicQ3IndonesiaQ3SwitzerlandQ1Q2Q2	Origin2022**SerbiaQ30.23TurkeyQ40.18United KingdomQ11.17AustriaQ20.54United KingdomQ30.26SwitzerlandQ10.66IndonesiaQ30.31TurkeyQ20.51NetherlandsQ10.61Czech RepublicQ30.29IndonesiaQ30.36SwitzerlandQ20.83

Table 2. Distribution of Articles with Journal Identification

* Quartile based on 2023 SCImago

** SJR column based on 2022 SCImago

Table 3. The Trend of STEM Education, Teaching Materials from Research Method	ods
---	-----

Approach	Research Methods	Frequency	Percentage (%)
Qualitative	Descriptive-Qualitative	1	5.5%
Quantitative	Descriptive Causal	1	5.5
	Comparative		
	Experiment	6	33.3
	Correlational	1	5.5

Approach	Research Methods	Frequency	Percentage (%)
	Survey	2	11.1
Other	Mixed Method	3	16.6
	Research and Development	4	22.2

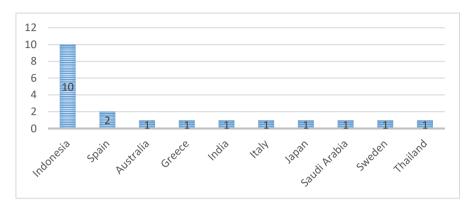


Figure 4. Distribution of STEM Education, and Teaching Materials Implementation Research Locations

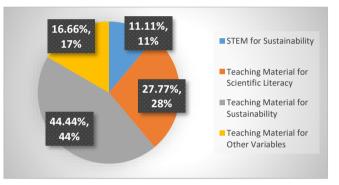


Figure 5. Distribution of STEM Education and Teaching Materials in Science Learning

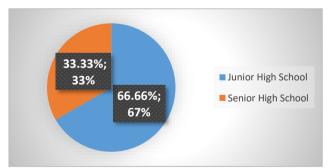


Figure 6. Distribution of Integration of STEM Education and Teaching Materials Education at Each Level

To analyze the countries contributing the most research on STEM and teaching materials, the researchers examined the authors' country of affiliation in academic articles. The distribution of these articles spans across 8 countries. As illustrated in Table 4, Indonesia stands out by contributing 55.5% of the articles related to STEM and teaching materials, making it the primary contributor. Following Indonesia, Spain accounted for 11.1% of the articles in this domain.

Country affiliations	2019	2020	2021	2022	2023	2024	Total	%
Indonesia	2	2	1	2	2	1	10	55.5
Japan					1		1	5.5
Australia				1			1	5.5
Spain		1			1		2	11.1
Saudi Arabia					1		1	5.5
Greece					1		1	5.5
Thailand			1				1	5.5
India				1			1	5.5
Total	2	3	2	4	6	1	18	100

Table 4. Countries of Affiliation Journals from January 2019 to January 2024

The countries included in the analysis, namely Indonesia, Japan, Australia, Spain, Saudi Arabia, Greece, Thailand, and India, were grouped together as they each contributed only one research paper between 2019 and 2024. Table 5 illustrates the origin countries of the journals where these research articles were published. Switzerland emerged with the highest number of publications, totaling 6 articles, followed by Indonesia with 3 articles. Collectively, these two countries accounted for half (50%) of the total articles analyzed in this study.

Source Country	2019	2020	2021	2022	2023	2024	Total	%
Serbia				1			1	5.5
Turkey					1	1	2	11.1
United Kingdom				1	1		2	11.1
Austria	1	1					2	11.1
Switzerland		1	1	1	2		6	33.3
Indonesia	1	1			1		3	16.6
Netherlands			1		1		2	11.1
Czech Republic				1			1	5.5
Total	2	3	2	4	6	1	18	100

Table 5. Origin Countries of the Journals from October 2023 to January 2024

Table 2 provides details regarding the 18 journals contributing to this literature review, categorized based on their impact factors. Notably, the "International Journal of Child-Computer Interaction" stands out with the highest impact index, boasting an SJR (Scimago Journal Ranking) of 33. The study's findings highlight four integration/applied approaches in the implementation of STEM and teaching materials, illustrated in Figure 5.

The integrated approach of STEM education with teaching materials has seen extensive use in the implementation of science learning overseas. Additionally, other variables such as STEM for sustainability, teaching materials for scientific literacy, and teaching materials for sustainability awareness have also been applied in science learning. Implementing science learning through the integration of STEM education with teaching materials facilitates the development of competencies aligned with learning objectives. STEM education and teaching materials have been

widely implemented across various levels of education overseas, with a particular emphasis observed at the secondary school level (Figure 6).

The integration of STEM and teaching materials into learning processes can be carried out through diverse learning strategies, as detailed in Table 6. Furthermore, STEM education commonly correlates with specific thematic approaches in research, as indicated by the distribution of findings presented in Table 6 and Table 7. These tables depict the integration or absence of learning strategy with teaching materials.

Learning Strategy	Percentage (%)	References
Scientific Literacy	4 (22,22)	Suprapto et al., (2022); Asrizal et al.,
		(2023); Widodo et al., (2020); Subali et
		al., (2023)
Sustainability	4 (22,22)	Sulistyani et al., (2022); Mulhim & Zaky
		(2023); Mylonas et al., (2023); Kaur &
		Kaur (2022); Álvarez-Herrero (2023).
Contextual	1 (5,55)	Muhlis et al., (2024)
Reception Comparison and Cache-cache Mode	1 (5,55)	Wang et al., (2020)
Problem Solving	1 (5,55)	Harjono & Gunawan (2020)
HOTS	1 (5,55)	Kwangmuang et al., (2021)
Blended Learning	1 (5,55)	Adam & Suprapto (2019)

Table 6. Integration Learning Strategy with Teaching Materials

Table 7. Not Integration	Learning Strategy with	Teaching Materials
rable 7. Not integration	Learning Strategy with	reaching Materials

Learning Strategy	Percentage (%)	References
STEM	2 (22,22)	Campbell et al., (2022); Velázquez et al., (2020)
Scientific Literacy	2 (22,22)	Jufrida et al., (2019); Adnan et al., (2021).

Table 8. Conducted Article Data

Year	Method	Purpose	Findings
cation ((2)		
2022	Mixed	The aim is to understand	The results showed that
	Method	how partnerships with	industry involvement in
		industry can impact	this project positively
		students, particularly in	impacted the
		terms of their	understanding and
		understanding of STEM	engagement of female
		and their interest in	students in STEM. They
		STEM careers and in line	feel inspired by industry
		with pillar 4 of SDGs:	role models and feel that
		Quality education, so that	involvement in solving
	cation (cation (2) 2022 Mixed	cation (2) 2022 Mixed Method how partnerships with industry can impact students, particularly in terms of their understanding of STEM and their interest in STEM careers and in line with pillar 4 of SDGs:

Writer's Name	Year	Method	Purpose	Findings
			GALS is indispensable.	"real" problems helps them
				get more involved in
				STEM.
Velazquez, F. D. C.,	2020	Mixed	The research aims to	The outcomes derived
&; Rivas, F. L.		Method	merge ongoing education	from the study are
			within school curricula,	compelling, revealing
			emphasizing the	elevated levels of
			cultivation of	awareness regarding the
			environmental	significance of
			consciousness tied to	sustainability,
			Sustainable Development	encompassing
			Goal 11. It evaluates	environmental, social, and
			students' attainment of	economic dimensions
			specified learning goals	fundamental to the
			and competencies	principle of sustainability.
			pertinent to sustainable	These findings serve as a
			development.	strong encouragement to
				persist in implementing the
				NEP within the classroom
				setting.
Teaching Materials (1	13)			
Teaching Materials for	Scienti	fic Literacy (5)		
Suprapto, N.,	2022	Research and	The research aims to	Students' scientific literacy
Tafauliyati, T., &;		Development	create a high-quality and	is low due to limited use of
Yanti, V. K.			valid E-book for	technology in physics
			educational use.	education, as indicated by
			Specifically, it seeks to	questionnaires. A newly
			assess the validity of a	developed scientific
			scientific literacy-focused	literacy E-book has a high
			E-book on temperature	validity score (90-95%) for
			and heat, analyzing	educational use.
			aspects like media,	
			materials, and language	
			through the ADDIE	
			framework.	
Asrizal, A., Annisa,	2023	Quasi-	The primary objective of	Overall, this study shows
N., Festiyed, F.,		experimental	this study was to examine	that the use of STEM-
Ashel, H., &; Amnah,			the influence of utilizing	integrated PDTM in
			-	

606

STEM-integrated digital

physics learning positively

R.

Writer's Name	Year	Method	Purpose	Findings
			teaching materials	impacts students'
			(PDTM) on students'	conceptual understanding
			comprehension of	and contributes to the
			concepts and the	improvement of new
			enhancement of new	literacy, including data
			literacy skills.	literacy, technological
			Researchers sought to	literacy, and human
			ascertain whether the	literacy. These results
			integration of STEM-	support the idea that
			based PDTM positively	STEM approaches in
			affected students' grasp of	education can help
			concepts and facilitated	students develop skills
			the cultivation of new	relevant to an increasingly
			literacy skills,	connected and technology-
			encompassing areas such	driven world in education.
			as data literacy,	
			technological literacy,	
			and human literacy.	
Widodo, W.,	2020	Pre-	The main aim of this	Based on the results of
Sudibyo, E.,		experiment	study is to assess the	data analysis, it can be
Suryanti., Sari, D. A.		Study	effectiveness of gadget-	concluded that gadget-
P., Inzanah, &;		2	based interactive	based interactive
Setiawan, B.			multimedia in enhancing	multimedia that contain
			the scientific literacy of	SSI on pressure concepts i
			Generation Z (Gen-Z)	effective in improving
			students in Indonesia.	Gen-Z's scientific literacy.
				However, Gen-Z is not
				easily serviced or not
				easily satisfied using the
				developed gadget-based
				interactive multimedia
Subali, B.,	2023	Quasi-	The main objectives of	Generally, scientific
Ellianawati., Faizah,		experimental	this study were to	literacy skills can improve
Z., & Sidiq, M.		L ·	investigate the potential	by implementing ethno-
· • • • • •			of RE-STEM application	STEM through RE-STEM
			in improving students'	App. The scientific
			scientific literacy skills	learning methods (in app
			through ethnoscience and	supported) also help
			STEM approaches,	teachers enhance students'
			Tr,	

Writer's Name	Year	Method	Purpose	Findings
			involving Indonesian	scientific literacy in each
			culture as a learning	aspect. Ethnoscience-
			resource, as well as to	learning integration
			understand its impact on	embodied in several
			students' ability to	learning themes and
			understand scientific	related to traditional
			concepts in the context of	Indonesian culture is one
			culture and ethnoscience.	of the significant factors in
				developing students'
				scientific literacy skills.
Muhlis., Raksun, A.,	2024	Research and	This study aims to	Results put forward by
Artayasam I. P.,		Development	develop context-based	researchers:
Hadiprayitno, G., &;			teaching materials and	 Teaching materials used
Sukri, A.			test the effectiveness of	by teachers in learning
			students' scientific	have not facilitated
			literacy skills. This study	students to develop
			also tries to understand	scientific literacy.
			whether the teaching	• According to experts, the
			materials are practical to	teaching materials that
			use by teachers and	have been developed are
			whether they meet the	valid and can be
			criteria for validity.	implemented.
				• Post hoc analysis showed
				that students' scientific
				literacy skills for aspects of
				interpreting data and
				evidence scientifically
				were higher compared to
				the other two aspects,
				evaluating and designing
				investigations scientific, as
				well as explaining
				phenomena scientific
				literacy of students.
Teaching Materials for	Sustain	ability (4)		
Sulistyani, A. M.,	2022	Research and	The main objective of	The data analysis and
Prasetyo, Z. K.,		Development	this study is to develop an	discussion shows the
Hanum, F., &;			e-Book that can be used	success of combining
Prasetyono, R. N.			in science learning about	information technology,

Writer's Name	Year	Method	Purpose	Findings
			the environment in junior	green science learning and
			high schools, which is	local wisdom through the
			based on Indonesian local	development of e-books.
			wisdom and aims to	The success of e-book
			improve environmental	development is shown by
			care attitudes among	the percentage of the three
			students. In addition, this	experts, namely 90.74%,
			study also intends to	indicating that the e-book
			validate the e-Book and	based on Google sites in a
			assess the impact of its	local wisdom-oriented
			use on the development	green science model is
			of environmentally caring	declared valid and feasible
			character among students.	to use.
Muhlim, E. N, A., &	2023	Descriptive	The study's objective was	Additionally, this study
Zaky, Y. A. M.		Causal	to examine the level of	underscores that e-books,
		Comparative	academic procrastination	as a sustainable digital
			among secondary school	learning resource, align
			students in the Kingdom	with the fourth Sustainable
			of Saudi Arabia. It	Development Goal, which
			focused on comparing	aims to ensure quality
		students utilizing	education for all. E-books	
		continuous digital	are highlighted as an eco-	
		learning materials,	friendly and resilient	
			specifically e-books, to	knowledge source,
			those relying on printed	contributing to sustainable
			books in traditional face-	educational practices.
			to-face learning settings.	
Mylonas, G.,	2022	Quantitative	This study aims to	The GAIA Challenge
Hofstaetter, J.,			quantify the influence of	employed basic game
Giannakos, M.,			gamification as teaching	mechanics, incorporating
Friedl, A., &;			materials/learning media	elements like group
Koulouris, P.			in increasing awareness	competition, to actively
			and sustainable behavior	involve participants. The
			among school students, as	study's outcomes indicate
			well as to explore the	successful achievement of
			extent to which this	research objectives. The
			approach can be used in	data demonstrates
			educational settings.	significant engagement

from students in the

Writer's Name	Year	Method	Purpose	Findings
				Challenge, emphasizing
				the efficacy of the
				competitive game
				mechanics used. In terms
				of promoting
				sustainability, post-activity
				surveys reflected increased
				awareness among students
				concerning pertinent
				issues. Educators also
				noted positive changes in
				their students' behavior
				following the activity.
Teaching Materials for	Other V	variables (4)		
Wang, J., Shimada,	2023	Quasi-	This study investigates	No significant correlation
A., Oi, M., Ogata, H.,		experimental	the impact of two	was observed between pre-
&; Tabata Y.			learning modes, reception	test and post-test scores in
			comparison and cache-	both groups (experiment: r
			cache comparison, on	= -0.141, control: r =
			student learning	0.127), preventing the use
			performance and	of ANCOVA. The "cache-
			perception, considering	cache comparison" group
			variations in initial	experienced higher stress
			knowledge levels. It aims	using the e-book compared
			to enhance the learning	to the "reception
			experience in a VSSE	comparison" group.
			environment and identify	Additionally, the
			more effective strategies	"reception comparison"
			based on students' skill	group felt more aligned
			levels.	with the learning mode
				than the "cache-cache
				comparison" group.
Harjono, A.,	2020	Quasi-	This study aims to assess	The interactive e-book,
Gunawan, G.,		experimental	the effectiveness of	featuring videos,
Adawiyah, R., &;			interactive E-books in	animations, audio, and
Herayanti, L.			improving high school	practical problem-solving
			students' understanding of	activities, proves effective
			physics concepts,	in enhancing students'
			specifically focusing on	understanding and mastery
				- •

Writer's Name	Year	Method	Purpose	Findings
			"Rotational Dynamics	of concepts. The results
			and equilibrium of rigid	indicate a 'high criteria'
			bodies," and to evaluate	improvement in
			their influence on	equilibrium and 'medium
			students' cognitive	criteria' in Rotational
			domains.	Dynamics. Mastery
				enhancement is observed
				across cognitive domains,
				with groups A and B
				showing 'high'
				improvement in C1 and
				C2, and 'medium' in C4
				and C5. Notably, group A
				excelled in C3 and C5 wit
				high improvement criteria
				while group B achieved
				medium criteria in these
				domains
Kwangmuang, P.,	2021	Research and	This study's primary goal	The study's findings from
Jarutkamolpong, S.,		Development	is to create a culturally	five provinces in MRB,
Sangboongraung, W.,		L.	contextualized "learning	Thailand, reveal that the
& Daungtod, S.			innovation" to enhance	design and implementation
-			higher-order thinking	of learning innovation
			skills among junior high	significantly benefit junio
			school students in	high school students. The
			Thailand. The research	integrity test results
			focuses on designing and	indicate a substantial
			assessing the impact of	improvement in higher-
			these innovations,	order thinking skills, with
			incorporating student	83% of students meeting
			perspectives.	success criteria. Positive
			1 1	student ratings emphasize
				the engaging and relevant
				content ($X = 4.61$),
				effective design (X =
				4.28), and multimedia's
				information-conveying
				effectiveness ($X = 4.02$).
				Overall, the learning $(X = 4.02)$.
				Overan, the learning

Writer's Name	Year	Method	Purpose	Findings
				innovation is well-
				received, supporting
				enhanced learning
				experiences and skill.
Adam, A. S., &;	2019	Mixed	The study aims to	A comprehensive e-Book
Suprapto, N.		Method	develop Beboo, an	named Beboo, inclusive of
			inclusive physics E-book,	static fluids concepts, two
			to help 11th-grade high	virtual laboratories (u-pipe
			school students	and hydraulic lift),
			understand static fluids	bilingual features, student
			and the Pascal-	worksheets, sequence
			Archimedes law. It	animations, videos, and a
			includes bilingual support	final self-assessment test,
			in English and Indonesian	has been developed. Beboo
			to cater to international	underwent expert
			school programs,	validations in four aspects,
			ensuring broader	ranging from 72% to 95%,
			accessibility.	all categorized as "very
				good."
Scientific Literacy (2)				
Jufrida, J., Basuki, F.	2019	Quantitative –	This study aims to answer	The findings revealed an
R., Kurniawan, W.,		Correlation	the question of whether	average score of 33.7 for
Pangestu, M. D., &;		Types	there is a relationship or	scientific literacy
Fitaloka, O.			correlation between the	(categorized as low) and ar
			level of scientific literacy	average score of 21.5 for
			of science and their	science study results
			learning achievement in	(classified as very low).
			science subjects. More	The results of the
			specifically, this study	correlation test showed a
			wanted to determine the	significance value of
			extent to which students'	0.000, which is less than
			scientific literacy had an	0.05. Consequently, the
			impact on student	null hypothesis (Ho) was
			achievement in science	rejected, indicating a
			subjects at Public Junior	significant relationship
			High School in Jambi.	between scientific literacy
				and students' science
				learning outcomes in the
				icarining outcomes in the

junior high schools across

Writer's Name	Year	Method	Purpose	Findings
				the Jaluko subdistrict in
				Jambi, Indonesia.
Adnan., Mulbar, U.,	2021	Quantitative	This study aims to	Junior high school students
Sugiarti., & Bahri, A.			understand the extent of	in South Sulawesi show
			students' science literacy	low scientific literacy in
			skills in South Sulawesi,	biology. Only 17.02%
			especially in biology	understand inquiry
			learning at junior high	methods, and 36.23% can
			school, and provide	handle quantitative data.
			guidelines and	This highlights the need
			recommendations to	for immediate
			improve students' science	improvements in biological
			literacy at the junior high	science education.
			school level.	

The study's findings highlight three distinct approaches employed in the execution of STEM or STEAM education within Indonesia, as depicted in Figure 5. The integrated STEM approach coupled with teaching materials has found widespread application in overseas science learning implementations, as indicated in Figure 5. Integrating STEM education and teaching materials into science learning via diverse learning models enables students to develop competencies aligned with learning objectives. Furthermore, the adoption of interactive teaching materials is prevalent in overseas settings, particularly in junior high schools and senior high schools, with a notable emphasis on secondary school implementation, as illustrated in Figure 6. Additionally, the integration of STEM and teaching materials can be harmonized with various learning strategies, detailed in Table 6. Notably, STEM education consistently correlates with specific research themes.

Predictors of Scientific Literacy and Sustainability Awareness

This section delves deeply into the intricate web of variables influencing scientific literacy and sustainability awareness, presenting a nuanced understanding of previous research findings and exploring diverse explanatory approaches. The research systematically identifies pivotal predictors contributing to the enhancement of scientific literacy and sustainability awareness among students. Several influential factors shape the landscape of scientific literacy:

Technology Integration, Adequate Teaching Materials, and Facility Availability

The inadequacy of integrating technology into science education, particularly in the field of science, alongside a shortage of teaching materials, emerges as a key factor contributing to low levels of scientific literacy (Jufrida et al., 2019; Adnan et al., 2021; Suprapto et al., 2022; Kaur & Kaur, 2022). This deficiency, consistently emphasized in various studies, extends specifically to physics education, exacerbating the hurdles in achieving scientific

literacy. Internal factors, such as a lack of facilities dedicated to science literacy training, further compound these challenges, underscoring the multifaceted nature of the issue (Jufrida et al., 2019; Suprapto et al., 2020).

Interactive Learning Media

External factors, specifically the limited use of interactive learning media, emerge as a substantial obstacle negatively impacting science literacy skills. This highlights the importance of dynamic and engaging instructional approaches to foster effective learning (Jufrida et al., 2019; Suprapto et al., 2020).

Development of Comprehensive Science Literacy E-Books and Multimedia

Addressing these multifaceted challenges, scholars advocate for the development of science literacy E-books and interactive multimedia. This initiative is not merely a technological upgrade but a holistic approach, supported by comprehensive learning tools such as syllabi, lesson plans, worksheets, and assessment sheets. These tools aim to provide a rich and immersive learning experience (Widodo et al., 2020; Adnan et al., 2021; Suprapto et al., 2022).

Innovative Teaching Strategies and Experimental Methods

Educators are encouraged to embrace inventive teaching approaches, placing a dedicated emphasis on enhancing science literacy. Notably, Adam & Suprapto (2021), Asrizal et al. (2023), and Muhlis et al. (2024) emphasize the importance of incorporating hands-on experimental methods and virtual experiments. These methods are instrumental in fostering higher-level cognitive processes and promoting contextual comprehension. This underscores the dynamic and evolving nature of effective pedagogy.

STEM Approach in Education

In the quest to enhance students' science literacy and instill environmental awareness in alignment with the Sustainable Development Goals (SDGs), the integration of STEM principles emerges as a pivotal and recognized strategy. This strategic integration, as highlighted by Velázquez & Rivas (2020), Campbell et al. (2022), Asrizal et al. (2023), and Subali et al. (2023), signifies a holistic approach that goes beyond traditional subject boundaries. This approach is designed to cultivate a comprehensive understanding of scientific concepts and their practical applications in the real world.

Multimedia-Rich E-Books with Bilingual Elements

As the educational terrain undergoes a transition from conventional textbooks to electronic books (e-books), there is a growing emphasis on advocating for the creation of multimedia-enriched e-books with bilingual features. Findings from studies by Adam & Suprapto (2021) and Wang et al. (2023) underscore the significance of inclusivity and broader access. This shift intends not only to cater to diverse learners but also to align with international educational initiatives.

Game-Based Teaching Materials and Environmental Education Activities

Teaching materials that incorporate game-based elements and integrated environmental education activities, exemplified by initiatives like #ALCada22, demonstrate their effectiveness in imparting sustainability concepts and raising students' environmental awareness. Contributions from Kwangmuang et al. (2021), Mylonas et al. (2022), and Álvarez-Herrero (2023) emphasize the value of gamification and real-world activities in enriching science literacy. The documented success of gadget-based interactive multimedia, alongside the application of the Socio-Scientific Issues approach as highlighted by Widodo et al. (2020), signals a notable shift towards immersive, technology-driven learning experiences.

Continuous Innovation in Teaching Materials and Methods

The effectiveness of electronic teaching materials, especially those incorporating innovative methodologies such as STEM, highlights the essential role of continuous innovation within the teaching community. This perpetual evolution is critical for the development and integration of interactive materials into the science learning process. Beyond embracing technological advancements, it signifies a pedagogical shift towards adaptive and studentcentered learning approaches. The ongoing innovation in both teaching materials and methods serves as a cornerstone in addressing the dynamic challenges and opportunities in science education. This approach not only enhances the overall learning experience but also equips students to navigate a swiftly changing educational landscape and prepares them for the scientific and environmental challenges of the future.

Discussion

This study aimed to conduct a literature review encompassing publications between 2019 and 2024 within SINTA 1 and quartiles Q1-Q4, focusing on STEM Education and teaching materials. The goal was to comprehend the theoretical and practical advancements, conceptual evolution, and varied factors explored in the literature concerning this subject.

The content derived from numerous studies, despite presenting a few areas with conflicting outcomes, was organized based on the PRISMA model. This systematic approach illustrated the potential to uncover novel factors contributing to STEM education and teaching materials. These insights aimed to offer a comprehensive understanding of the phenomenon of low scientific literacy and sustainability awareness, addressing it holistically by considering diverse factors influencing the process.

Topics of STEM Education and Teaching Materials Research

STEM and teaching materials research has increased from year to year (See Fig. 2). Research in STEM and teaching materials has witnessed a steady increase over the years, delving into the challenges surrounding students' scientific literacy. Studies attribute low achievement to the underutilization of technology and insufficient teaching materials, particularly in physics (Jufrida et al., 2019; Adnan et al., 2021; Suprapto et al., 2022; Kaur &

Kaur, 2022). Both internal and external factors, such as a lack of facilities and interactive learning media, are identified as contributors to poor science literacy skills (Jufrida et al., 2019; Suprapto et al., 2020).

In response to these challenges, the research advocates for the development of science literacy E-books and multimedia, supported by comprehensive learning tools (Widodo et al., 2020; Adnan et al., 2021; Suprapto et al., 2022). Diverse teaching strategies, including hands-on experiments and virtual experiments, are encouraged to enhance science and new literacy (Asrizal et al., 2023; Muhlis et al., 2024).

The integration of a STEM approach is recognized as an effective strategy to improve new literacy and sustainability awareness (Velázquez & Rivas, 2020; Campbell et al., 2022; Asrizal et al., 2023; Subali et al., 2023). Studies emphasize the significance of Sustainable Development Goals (SDGs), showing increased awareness of sustainability, including practice, behavioral, and emotional awareness among students (Velázquez & Rivas, 2020; Kaur & Kaur, 2022). The shift from traditional textbooks to e-books is noted, emphasizing the need for multimedia-rich content and bilingual elements for wider access and alignment with international programs (Adam & Suprapto, 2021; Suprapto et al., 2022; Wang et al., 2023).

Gadget-based interactive multimedia and the Socio-Scientific Issues approach are highlighted as effective tools in improving science literacy, with positive student responses (Widodo et al., 2020). Game-based teaching materials and integrated environmental education activities further contribute to students' awareness of environmental and sustainability issues (Kwangmuang et al., 2021; Mylonas et al., 2022; Álvarez-Herrero, 2023).

The research underscores the success of innovative electronic teaching materials, particularly those employing the STEM approach, in enhancing students' science literacy and awareness of sustainable issues. The findings encourage teachers to embrace innovation in creating and implementing interactive teaching materials in the science learning process. Trends in STEM education and teaching materials in terms of research methods that dominate used in overseas are experimental, research and development, and mixed methods (See Table 3 and Table 8).

STEM Education and Teaching Materials on Science Learning Implementation

The study emphasizes the crucial role played by STEM (Science, Technology, Engineering, and Mathematics) education and innovative teaching materials in enhancing students' scientific literacy and sustainability awareness. The research findings uncover a noteworthy deficiency in scientific literacy among students, linked to inadequate technology utilization, particularly in physics education, and a lack of sufficient teaching materials (Jufrida et al., 2019; Adnan et al., 2021; Suprapto et al., 2022; Kaur & Kaur, 2022). Both internal and external factors, such as limited facilities and a shortage of interactive learning media, contribute to the challenges in science literacy (Jufrida et al., 2019; Suprapto et al., 2020). To address these challenges, the study advocates for the development of science literacy E-books and interactive multimedia, complemented by comprehensive learning tools (Widodo et al., 2020; Adnan et al., 2021; Suprapto et al., 2022). Teachers are encouraged to employ diverse strategies, including hands-on experiments and virtual experiments, to foster higher-level thinking and contextual

understanding (Adam & Suprapto, 2021; Muhlis et al., 2024). The integration of a STEM approach values emerges as a potent strategy to improve both new literacy and sustainability awareness (Velázquez & Rivas, 2020; Campbell et al., 2022; Asrizal et al., 2023). The gradual shift from traditional textbooks to e-books, enriched with multimedia elements, is highlighted for its positive impact (Suprapto et al., 2022; Wang et al., 2023). Various studies showcase the effectiveness of interactive e-books, gadget-based multimedia, game-based teaching materials, and integrated environmental education activities in enhancing science literacy and sustainability awareness (Harjono et al., 2020; Widodo et al., 2020; Mylonas et al., 2022; Kwangmuang et al., 2021; Álvarez-Herrero, 2023). The success of these electronic teaching materials, particularly those incorporating STEM approach, underscores their significance in the current educational landscape, promoting a call for increased innovation among teachers in crafting interactive learning experiences for students.

A Comprehensive Approach through STEM Integration, Multimedia E-Books, and Game-Based Teaching Material

This research emphasizes the urgency of enhancing students' scientific literacy, which currently stands at a low level due to the insufficient utilization of technology, particularly in the context of science education, and the lack of teaching materials. To address these challenges, a versatile solution is proposed, emphasizing the integration of STEM principles into teaching materials (Subali et al., 2023; Asrizal et al., 2023).

It is recommended to introduce science literacy E-books or interactive multimedia enriched with various media elements, including text, images, diagrams, sound effects, music, videos, and animations. This approach aims not only to create an interactive and effective learning experience but also to design a stimulating learning environment. Moreover, the integration of bilingual elements is suggested to support broader access and alignment with relevant international programs (Widodo et al., 2020; Adnan et al., 2021; Adam & Suprapto, 2021; Suprapto et al., 2022).

Based on findings from studies on energy and sustainability education, game-based teaching materials are highlighted as valuable tools for conveying sustainability concepts to students. This approach not only enhances students' attitudes and awareness of sustainability issues but also immerses them in a holistic understanding of economic, environmental, and social aspects, and positive student responses highlight the potential of this integrated method in engaging and enhancing comprehension, particularly in abstract and complex scientific topics. This approach contributes to fostering a sense of responsibility and care toward environmental concerns (Kwangmuang et al., 2021; Mylonas et al., 2022; Álvarez-Herrero, 2023).

Integrating sustainability education into teaching materials has been shown to enhance students' awareness across various dimensions of sustainability, including practice, behavioral, and emotional aspects (Velázquez & Rivas, 2020; Kaur & Kaur, 2022). E-books, serving as a sustainable digital learning resource, align with the fourth Sustainable Development Goal, focusing on quality education. Their eco-friendly and enduring nature makes them a valuable source of knowledge, fostering sustainability in educational practices.

The development of electronic teaching materials, specifically E-books, utilizing a green science approach, is encouraged. This approach, supported by studies (Sulistyani et al., 2022; Kaur & Kaur, 2022; Mulhim & Zaky, 2023), positively impacts students' environmental consciousness. It emphasizes the significance of integrating environmental themes into science education, contributing to the cultivation of students' environmental care values.

This comprehensive strategy aims to revolutionize science education by uniting STEM principles, interactive multimedia resources, and innovative game-based teaching methods. The expectation is that this combination will shape higher levels of scientific literacy, deepen students' understanding of science, and stimulate their interest in exploring further realms of knowledge. Thus, these measures are anticipated to mold a generation of students ready to face the complex challenges of the modern world.

Promotion of STEM Approach in Education

Highlighting the importance of the STEM approach, especially in physics education, is acknowledged as a valuable strategy for enhancing students' science literacy. This approach not only enhances scientific comprehension but also integrates sustainable education, promoting environmental awareness aligned with Sustainable Development Goals (SDGs) (Velázquez & Rivas, 2020; Campbell et al., 2022; Asrizal et al., 2023). In essence, the incorporation of STEM principles into teaching materials serves as a comprehensive strategy to tackle challenges in students' scientific literacy. This approach not only underscores technological advancements but also integrates sustainability education, creating a well-rounded learning environment that aligns with current educational needs. The success of various electronic teaching materials developed with innovative approaches, particularly STEM, underscores their significance in advancing science literacy and sustainability awareness among students. This research encourages educators to embrace a more innovative and interactive approach in crafting teaching materials for the science learning process.

STEM and Teaching Materials Associated Theme

The text emphasizes STEM education and innovative teaching materials to address scientific literacy challenges and promote sustainability awareness. It identifies inadequate technology use and teaching materials as contributors to low literacy, emphasizing the need for E-books and multimedia. Urgent calls are made for their development, with encouragement for teachers to adopt diverse strategies. STEM integration and the shift to multimedia-rich e-books are highlighted, along with positive impacts of interactive multimedia and game-based teaching. The success of electronic teaching materials underscores their role in enhancing science literacy and sustainability awareness, urging continuous teacher innovation.

Future STEM Education and Teaching Materials Research Recommendations

Recommendations for future research related to these topics are proposed, including: (1) Investigate and develop innovative teaching approaches that integrate STEM and Education for Sustainable Development (ESD) to

enhance students' science literacy and awareness of sustainable issues; (2) Conduct research to assess the impact of interactive E-books, particularly those incorporating multimedia elements and bilingual features, on students' understanding of science materials and abstract concepts; (3) Explore the effectiveness of game-based approaches in teaching sustainability concepts, as suggested by studies on game-based teaching materials in energy and sustainability education; and (4) Encourage research on strategies to enhance teacher innovation in creating and implementing interactive teaching materials in the science learning process, particularly those aligned with STEM and ESD principles.

Conclusion and Future Research

The trend in STEM education and teaching materials research overseas over the past five years predominantly revolves around experimental methods, particularly in secondary school science subjects. Key themes such as critical thinking skills, scientific literacy, and learning outcomes are dominant in STEM education studies. The findings suggest that STEM education significantly fosters 21st-century learning skills.

Teaching materials are designed to enhance classroom learning, formulated as science-based materials to adapt to evolving curricular changes. It is imperative to continue evolving the learning process, striving to create innovative learning products that address societal educational needs. Implementing STEM approaches in teaching materials innovation, as highlighted in the results and discussions, is crucial.

However, it's essential to conduct research beyond statistical analyses, exploring factors like cultural context and perceptions of education's value. Investigating novel avenues and challenges faced by students in adapting to university life is vital. Dropout intention, often viewed deterministically, needs a more comprehensive approach considering the entire educational journey.

The development of scientific literacy E-books or interactive multimedia, supported by learning tools like syllabi, lesson plans, and assessments, has been advocated by various studies. Moreover, studies emphasize the potential of science learning in enhancing scientific literacy, new literacy, and sustainability awareness through the STEM approach. This approach integrates sustainable education, focusing on environmental awareness aligned with Sustainable Development Goals (SDGs). Recognizing that internal school strategies are insufficient, influencing educational policies becomes crucial to enhancing overall education quality and preventing educational issues.

Future studies should aim for a holistic understanding by integrating STEM education with technology-based teaching materials, Environmental and Sustainable Development (ESD), and enhancing 21st-century learning skills. Such research endeavors aim to reinforce students' persistence and successful academic completion. This critical analysis review provides theoretical insights, exploring low scientific literacy, limited use of STEM approaches, and the innovation of interactive teaching materials. By delving into causative factors, identifying variables, and categorizing them based on existing research, this review aims to stimulate new perspectives for advancing theoretical and practical aspects. Understanding the current scientific knowledge while exploring new variables can pave the way for more comprehensive future explorations.

Limitation

To ensure the thoroughness of the study, it is advisable to expand the search scope of articles in the database from 2019 to 2024. This broader timeframe encompasses recent developments and allows for a more up-to-date and comprehensive examination of research in STEM education, teaching materials, scientific literacy, and sustainability awareness. Including articles published during this extended period will provide a nuanced understanding of the evolving landscape. Moreover, conducting a focused search for emerging trends, innovative approaches, and recent advancements in these areas will contribute valuable insights to the study, enhancing its relevance and depth.

References

- Adam, A. S., & Suprapto, N. (2019). One-Stop Physics E-Book Package Development for Senior High School Learning Media. *International Journal of Emerging Technologies in Learning*, 14(19), 150–158. https://doi.org/10.3991/ijet.v14i1910761
- Adnan, M. U., Sugiarti, & Bahri, A. (2021). Scientific Literacy Skills of Students: Problem of Biology Teaching in Junior High School in South Sulawesi, Indonesia. *International Journal of Instruction*, 14(3), 847– 860. https://doi.org/10.29333/iji.2021.14349a
- Álvarez-Herrero, J. F. (2023). Urban Itineraries With Smartphones to Promote an Improvement in Environmental Awareness Among Secondary School Students. *International Journal of Environmental Research and Public Health*, 20(3). https://doi.org/10.3390/ijerph20032009
- Asrizal, A., Annisa, N., Festiyed, F., Ashel, H., & Amnah, R. (2023). STEM-Integrated Physics Digital Teaching Material to Develop Conceptual Understanding and New Literacy of Students. *EURASIA: Journal of Mathematics, Science and Technology Education*, 19(7), 1-14. https://doi.org/10.29333/ejmste/13275
- Bybee, R. W. (2013). *The Case for STEM Education: Challenges and Opportunity*. Arlington, VI: National Science Teachers Association (NSTA) Press.
- Campbell, C., Hobbs, L., Xu, L., McKinnon, J., & Speldewinde, C. (2022). Girls in STEM: Addressing SDG 4 in Context. Sustainability (Switzerland), 14(9). https://doi.org/10.3390/su14094897
- Cottrell, S. (2017). *Critical Thinking Skills: Developing Effective Analysis and Argument*. Basingstoke: Palgrave Macmillan.
- Grant, M. J., & Booth, A. (2009). A Typology of Reviews: An Analysis of 14 Review Types and Associated Methodologies. Health Information and Libraries Journal, 26(2), 91–108.
- Harjono, A., Gunawan, G., Adawiyah, R., & Herayanti, L. (2020). An Interactive E-Book for Physics to Improve Students' Conceptual Mastery. *International Journal of Emerging Technologies in Learning*, 15(5), 40– 49. https://doi.org/10.3991/IJET.V15I05.10967
- Jufrida, J., Basuki, F. R., Kurniawan, W., Pangestu, M. D., & Fitaloka, O. (2019). Scientific Literacy and Science Learning Achievement at Junior High School. *International Journal of Evaluation and Research in Education*, 8(4), 630–636. https://doi.org/10.11591/ijere.v8i4.20312
- Kaur, J., & Kaur, K. (2022). Developing Awareness and Attitude Towards Sustainability Through an Activity-Based Intervention. *Journal on Efficiency and Responsibility in Education and Science*, 15(4), 212–220.

https://doi.org/10.7160/eriesj.2022.150402

- Kwangmuang, P., Jarutkamolpong, S., Sangboonraung, W., & Daungtod, S. (2021). The Development of Learning Innovation to Enhance Higher Order Thinking Skills for Students in Thailand Junior High Schools. *Heliyon*, 7(6), e07309. https://doi.org/10.1016/j.heliyon.2021.e07309
- Muhlis., Raksun, A., Artayasa, I. P., Hadiprayitno, G., & Sukri, A. (2024). Developing Context-Based Teaching Materials and Their Effects On Students' Scientific Literacy Skills. *Pegem Journal of Education and Instruction*, 14(1), 226–233. https://orcid.org/0000-0002-5430-8399
- Mulhim, E. N. A., & Zaky, Y. A. M. (2023). Sustainability in E-Learning: E-books and Academic Procrastination among Secondary Students. Sustainability (Switzerland), 15(14668), 1-13. https://doi.org/10.3390/su152014668
- Mylonas, G., Hofstaetter, J., Giannakos, M., Friedl, A., & Koulouris, P. (2023). Playful Interventions for Sustainability Awareness in Educational Environments: A Longitudinal, Large-Scale Study in Three Countries. *International Journal of Child-Computer Interaction*, 35. https://doi.org/10.1016/j.ijcci.2022.100562
- National Research Council. (2014). *Developing Assessments for the Next Generation Science Standards*. Washington, DC: The National Academies Press.
- Subali, B., Ellianawati., Faizah, Z., & Sidiq, M. (2023). Indonesian National Assessment Support: Can RE-STEM Android App Improve Students' Scientific Literacy Skills? *International Journal of Evaluation and Research in Education*, 12(3), 1399–1407. https://doi.org/10.11591/ijere.v12i3.24794
- Sulistyani, A. M., Prasetyo, Z. K., Hanum, F., & Prasetyono, R. N. (2022). Development and Validation of e-Books during the Post-Pandemic to Improve Attitude towards Environmental Care in Case of Indonesia. *International Journal of Advanced Computer Science and Applications*, 13(4), 681–688. https://doi.org/10.14569/IJACSA.2022.0130479
- Suprapto, N., Tafauliyati, T., & Yanti, V. K. (2022). Development of e-Book with Flip PDF Professional Based on Scientific Literacy. *TEM Journal*, 11(2), 851–855. https://doi.org/10.18421/TEM112-44
- Torlakson, T. (2014). *Recommendations for Transitioning California to a Future Assessment System. A Report by State Superintendent of Public Instruction Tom Torlakson.* Sacramento, CA: California Department of Education.
- Velázquez, D. C. F., & Rivas, F. L. (2020). Education for Sustainable Development in STEM (Technical Drawing): Learning Approach and Method for SDG 11 in Classrooms. *Sustainability (Switzerland)*, 12(7). https://doi.org/10.3390/su12072706
- Wallace, M., & Wray, A. (2016). Critical Reading and Writing for Postgraduates. Los Angeles: SAGE Publications.
- Wang, J., Shimada, A., Oi, M., Ogata, H., & Tabata, Y. (2023). Development and Evaluation of A Visualization System to Support Meaningful E-Book Learning. *Interactive Learning Environments*, 31(2), 836–853. https://doi.org/10.1080/10494820.2020.1813178
- Widodo, W., Sudibyo, E., Suryanti, Sari, D. A. P., Inzanah, & Setiawan, B. (2020). The Effectiveness of Gadget-Based Interactive Multimedia in Improving Generation Z's Scientific Literacy. Jurnal Pendidikan IPA Indonesia, 9(2), 248–256. https://doi.org/10.15294/jpii.v9i2.23208

Author Information				
Rizky Agassy Sihombing	Diana Rochintaniawati			
bttps://orcid.org/0000-0002-7167-2862	bttps://orcid.org/0000-0003-1720-8433			
Department of Science Education	Universitas Pendidikan Indonesia			
Faculty of Mathematics and Science Education	Jl. Dr. Setiabudi No. 229, Bandung			
Universitas Pendidikan Indonesia, Indonesia	Indonesia			
&				
Graduate Institute of Science Education	Muslim			
College of Science	(b) https://orcid.org/0000-0001-5785-6369			
National Taiwan Normal University	Universitas Pendidikan Indonesia			
Taiwan	Jl. Dr. Setiabudi No. 229, Bandung			
Contact e-mail: rizkyagassy@upi.edu	Indonesia			
Rika Rafikah Agustin	Taufik Rahman			
bttps://orcid.org/0000-0002-8369-1665	(b) https://orcid.org/0000-0002-3358-4634			
Universitas Pendidikan Indonesia	Universitas Pendidikan Indonesia			
Jl. Dr. Setiabudi No. 229, Bandung	Jl. Dr. Setiabudi No. 229, Bandung			
Indonesia	Indonesia			