Using Data Mining Techniques Examination of the Middle School Students’ Attitude towards Mathematics in the Context of Some Variables
Abstract
The aim of this study is to examine middle school students’ attitude towards mathematics in the context of their mathematic learning preferences using data mining which is data analysis methodology that has been successfully used in different areas including educational domains. ‘How do I actually learn?’ questionnaire and attitude scale were applied to 702 middle school students studying in three different cities of Turkey. Demographic data (gender, grade level, parents’ education level, pre-school education) were also gathered. Data mining techniques such as decision tree was implemented. Furthermore web graph was used for visualization of relationship between mathematic learning preference and attitude towards mathematics. Constructed decision tree models with C5.0 algorithm revealed that all of variables used in this study are related to the attitude towards mathematics but the most effective attribute is found as grade level. Using web graph, it was found that the strongest relationship was between reflective learning preference and positive level attitude towards mathematics.Downloads
Published
How to Cite
Issue
Section
License
Articles may be used for research, teaching, and private study purposes. Authors alone are responsible for the contents of their articles. The journal owns the copyright of the articles. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of the research material.
The author(s) of a manuscript agree that if the manuscript is accepted for publication in the journal, the published article will be copyrighted using a Creative Commons “Attribution 4.0 International” license. This license allows others to freely copy, distribute, and display the copyrighted work, and derivative works based upon it, under certain specified conditions.
Authors are responsible for obtaining written permission to include any images or artwork for which they do not hold copyright in their articles, or to adapt any such images or artwork for inclusion in their articles. The copyright holder must be made explicitly aware that the image(s) or artwork will be made freely available online as part of the article under a Creative Commons “Attribution 4.0 International” license.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.